Molecular Electronics: From Basic Chemical Principles to Photosynthesis to Steady-State Through-Molecule Conductivity to Computer Architectures
Jeffrey R. Reimers A C , Ante Bilić A , Zheng-Li Cai A , Mats Dahlbom A , Nicholas A. Lambropoulos A , Gemma C. Solomon A , Maxwell J. Crossley A and Noel S. Hush A BA School of Chemistry, University of Sydney, Sydney NSW 2006, Australia.
B School of Molecular and Microbial Biosciences, University of Sydney, Sydney NSW 2006, Australia.
C Corresponding author. Email: reimers@chem.usyd.edu.au
Australian Journal of Chemistry 57(12) 1133-1138 https://doi.org/10.1071/CH04132
Submitted: 11 May 2004 Accepted: 14 October 2004 Published: 8 December 2004
Abstract
Molecular electronics offers many possibilities for the development of electronic devices beyond the limit of silicon technology. Its basic ideas and history are reviewed, and a central aspect of the delocalization of electrons across molecules and junctions is examined. Analogies between key processes affecting steady-state through-molecule conduction and equilibrium geometric and spectroscopic properties of paradigm molecules, such as hydrogen, ammonia, benzene, and the Creutz–Taube ion are drawn, and the mechanisms by which control can be exerted over molecular-electronic processes during biological photosynthesis are examined. Ab initio molecular dynamics and simulations of conductivity are then presented for carbon nanotube flanged to gold(111), and device characteristics are calculated for a molecular shift register clocked by two gold electrodes.
Acknowledgments
We thank the Australian Research Council and Molecular Electronics Research for supporting this research and the Australian Partnership of Advanced Computing for the provision of much of the computer resources required.
[1]
R. F. Service,
Science 2002, 295, 2398.
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |
| Crossref | GoogleScholarGoogle Scholar |