Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Infrared Spectroscopy of Solvation and Isomers in Fe+(H2O)1,2Arm Complexes

Richard S. Walters A and Michael A. Duncan A B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Georgia, Athens, GA 30602-2556, USA.

B Corresponding author. Email: maduncan@uga.edu

Australian Journal of Chemistry 57(12) 1145-1148 https://doi.org/10.1071/CH04118
Submitted: 10 May 2004  Accepted: 23 July 2004   Published: 8 December 2004

Abstract

Vibrational spectroscopy in the OH-stretching region is reported for the mass-selected ion–molecule complexes Fe+(H2O)Ar2 and Fe+(H2O)2Ar. These species are produced by laser vaporization in a pulsed nozzle cluster source, mass-selected with a reflectron time-of-flight mass spectrometer, and studied with infrared laser photodissociation spectroscopy. To achieve efficient photodissociation, the pure metal–water complexes are ‘tagged’ with weakly bound argon atoms. Such tagging is expected to exert a minor perturbation on the spectroscopy. However, we find that this may not be true depending on the binding site. The symmetric stretch and asymmetric stretch of water in these complexes shifts 30–50 cm−1 to the red as a result of binding to the metal cation, and an additional redshift is found for isomers with argon bound to the OH of water. The relationships between isomers and infrared spectra are discussed.


Acknowledgment

We appreciate the support of this work by the USA Department of Energy through grant DE-FG02–96ER14658.


References


[1]   (a) J. Burgess, Metal Ions in Solution 1978 (John Wiley and Sons: New York, NY).
       (b) J. Burgess, Ions in Solution 1999 (Horwood: Chichester).

[2]   Organometallic Ion Chemistry (Ed. B. S. Frieser) 1996 (Kluwer: Dordrecht).

[3]   Adv. Metal and Semiconductor Clusters (Ed. M. A. Duncan) 2001, Vol. 5 (Elsevier: Amsterdam).

[4]   (a) M. Rosi, C. W. Bauschlicher Jr, J. Chem. Phys. 1989, 90,  7264.
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |   in preparation.
         
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1