Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE

Chemical Speciation of Hg(ii) with Environmental Inorganic Ligands

Kipton J. Powell A H , Paul L. Brown B , Robert H. Byrne C , Tamas Gajda D , Glenn Hefter E , Staffan Sjöberg F and Hans Wanner G
+ Author Affiliations
- Author Affiliations

A Department of Chemistry, University of Canterbury, Christchurch, New Zealand.

B Australian Sustainable Industry Research Centre, Monash University, Churchill VIC 3842, Australia.

C Department of Marine Science, University of South Florida, St. Petersburg, FL 33701-5016, USA.

D Department of Inorganic and Analytical Chemistry, A. József University, Szeged 6701, Hungary.

E School of Mathematical and Physical Sciences, Murdoch University, Murdoch WA 6150, Australia.

F Department of Inorganic Chemistry, Umeå University, 90187 Umeå, Sweden.

G Swiss Federal Nuclear Safety Inspectorate, 5232 Villigen, Switzerland.

H Author to whom correspondence should be addressed (e-mail: kip.powell@canterbury.ac.nz).

Australian Journal of Chemistry 57(10) 993-1000 https://doi.org/10.1071/CH04063
Submitted: 16 March 2004  Accepted: 12 July 2004   Published: 1 October 2004

Abstract

Complex formation between Hg(ii) and the common environmental ligands Cl, OH, CO32−, SO42−, and PO43− can have profound effects on Hg(ii) speciation in natural waters with low concentrations of organic matter. Hg(ii) is labile, so its distribution among these inorganic ligands can be estimated by numerical modelling if reliable values for the relevant stability constants are available. A summary of critically reviewed constants and related thermodynamic data is presented. Recommended values of log10βp,q,r° and the associated reaction enthalpies, ΔrHm°, valid at Im = 0 mol kg−1 and 25°C, along with the equations and specific ion interaction coefficients required to calculate log10βp,q,r values at higher ionic strengths and other temperatures are also presented.

Under typical environmental conditions Hg(ii) speciation is dominated by the reactions Hg2+ + 2Cl ↔ HgCl2(aq) (log10β2° = 14.00 ± 0.07), Hg2+ + Cl + H2O ↔ Hg(OH)Cl(aq) + H+ (log10β° = 4.27 ± 0.35), and Hg2+ + 2H2O ↔ Hg(OH)2(aq) + 2H+ (log10*β2° = −5.98 ± 0.06).


References


[1]   T. M. Florence, G. E. Batley, CRC Crit. Rev. Anal. Chem. 1980, 9,  219.
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |   in press.
         
         
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
        | Crossref |  GoogleScholarGoogle Scholar |  
         
         
         
         
         
        | Crossref |  GoogleScholarGoogle Scholar |  
         
        | Crossref |  GoogleScholarGoogle Scholar |  open url image1

[23]   J. D. Cox, D. D. Wagman, D. A. Medvedev, CODATA Key Values for Thermodynamics 1989 (Hemisphere: New York, NY).

[24]   L. D. Pettit, K. J. Powell, Sol-Eq Solution Equilibria 1998 (Academic Software: Otley).

[25]   Solgaswater for Windows. www.chem.umu.se/dep/inorgchem

[26]   F. M. M. Morel, J. G. Hering, Principles and Applications of Aquatic Chemistry 1993 (Wiley: New York, NY).

[27]   A. E. Martell, R. M. Smith, Critical Stability Constants, Vol. 5: First Supplement 1982 (Plenum: New York, NY).

[28]   J. F. Pankow, Aquatic Chemistry Concepts 1991 (Lewis: Chelsea, MI).

[29]   B. Allard, in Trace Elements in Natural Waters (Eds B Salbu, E. Steinnes) 1995, pp. 161–163 (CRC Press: Boca Raton, FL).