Remarkable Symmetries in the Milky Way Disc's Magnetic Field
P. P. Kronberg A B E and K. J. Newton-McGee C DA Department of Physics, University of Toronto, Toronto, M5S 1A7, Canada
B IGPP, Los Alamos National Laboratory, M.S. T006, Los Alamos, NM 87545, USA
C Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006, Australia
D Australia National Telescope Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia
E Corresponding author. Email: kronberg@physics.utoronto.ca
Publications of the Astronomical Society of Australia 28(2) 171-176 https://doi.org/10.1071/AS10045
Submitted: 29 November 10 Accepted: 4 March 11 Published: 22 June 2011
Journal Compilation © Astronomical Society of Australia 2011
Abstract
We apply a new, expanded compilation of extragalactic source Faraday rotation measures (RM) to investigate the broad underlying magnetic structure of the Galactic disk at latitudes |b| 15° over all longitudes l, where our total number of RMs is comparable to those in the combined Canadian Galactic Plane Survey (CGPS) at |b| < 4° and the Southern Galactic Plane (SGPS) |b| < 1.5°. We report newly revealed, remarkably coherent patterns of RM at |b| 15° from l ~270° to ~90° and RM(l) features of unprecedented clarity that replicate in l with opposite sign on opposite sides of the Galactic center. They confirm a highly patterned bisymmetric field structure toward the inner disc, an axisymmetic pattern toward the outer disc, and a very close coupling between the CGPS/SGPS RMs at |b| 3° (‘mid-plane’) and our new RMs up to |b| ~15° (‘near-plane’).
Our analysis also shows the vertical height of the coherent component of the disc field above the Galactic disc's mid-plane — to be ~1.5 kpc out to ~6 kpc from the Sun. This identifies the approximate height of a transition layer to the halo field structure. We find no RM sign change across the plane within |b| ~15° in any longitude range. The prevailing disc field pattern and its striking degree of large-scale ordering confirm that our side of the Milky Way has a very organized underlying magnetic structure, for which the inward spiral pitch angle is 5.5° ± 1° at all |b| up to ~12° in the inner semicircle of Galactic longitudes. It decreases to ~0° toward the anticentre.
Keywords: magnetic fields — methods: observational — Galaxy: disc — Galaxy: structure — radio continuum: ISM
References
Auger Collaboration, , 2007, Science, 318, 938| Crossref | GoogleScholarGoogle Scholar | 17991855PubMed |
Beck, R., Brandenburg, A., Moss, D., Shukurov, A. and Sokoloff, D. D., 1997, ARAA, 34, 155
| Crossref | GoogleScholarGoogle Scholar |
Beuermann, K., Kanbach, G. and Berkhuijsen, E. M., 1985, A&A, 153, 17
Brown, J. C., Haverkorn, M., Gaensler, B. M., Taylor, A. R., Bizunok, N. S., McClure-Griffiths, N. M., Dickey, J. M. and Green, A. J., 2007, ApJ, 663, 238
| Crossref | GoogleScholarGoogle Scholar |
Brown, J. C., Taylor, A. R. and Jackel, B. J., 2003, ApJS, 145, 213
| Crossref | GoogleScholarGoogle Scholar |
Frick, P., Stepanov, R., Shukurov, A. and Sokoloff, D., 2001, MNRAS, 325, 649
| Crossref | GoogleScholarGoogle Scholar |
Gaensler, B. M., Madsen, G. J., Chatterjee, S. and Mao, S. A., 2008, PASA, 25, 184
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXnsVSgu7Y%3D&md5=25a32519671bf3c117be5559318a9e12CAS |
Haverkorn, M., Gaensler, B. M., Brown, J. C., Bizunok, N. S., McClure-Griffiths, N. M., Dickey, J. M. and Green, A. J., 2006, ApJL, 637, L33
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVCrsb8%3D&md5=df17643c52464cbf42f6261b915e0f87CAS |
Han, J. L., Manchester, R. N. and Qiao, G. J., 1999, MNRAS, 306, 371
| Crossref | GoogleScholarGoogle Scholar |
Han, J. L., Manchester, R. N. and Qiao, G. J., 2006, ApJ, 642, 868
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XlvVWisLg%3D&md5=9c7ffdac364afc8fe15e43355058e105CAS |
Heiles, C., 1996, ApJ, 462, 43
| Crossref | GoogleScholarGoogle Scholar |
Jansson, R., Farrar, G. R., Waelkens, A. H. and Enßlin, T. E., 2009, J. Cosm. & Particle Physics, 7, 21
| Crossref | GoogleScholarGoogle Scholar |
Klein, U., Mack, K.-H., Gregorini, L. and Vigotti, M., 2003, A&A, 406, 579
| Crossref | GoogleScholarGoogle Scholar |
Manchester, R. N., 1972, ApJ, 172, 43
| Crossref | GoogleScholarGoogle Scholar |
Manchester, R. N., 1974, ApJ, 188, 637
| Crossref | GoogleScholarGoogle Scholar |
Mao, S. A., Gaensler, B. M., Stanimirovic, S., Haverkorn, M., McClure-Griffiths, N. M., Staveley-Smith, L. and Dickey, J. M., 2008, ApJ, 688, 1029
| Crossref | GoogleScholarGoogle Scholar |
Men, H., Ferrière, K. and Han, J. L., 2008, A&A, 486, 819
| Crossref | GoogleScholarGoogle Scholar |
Pshirkov, M. S., Tinyakov, P. G., Kronberg, P. P. & Newton-McGee, K. J., 2011, ApJ (submitted)
Shukurov, A., Sokoloff, D., Subramanian, K. and Brandenburg, A., 2006, A&A, 448, L33
| Crossref | GoogleScholarGoogle Scholar |
Sun, X. H., Reich, W., Waelkens, A. and Enßlin, T. A., 2008, A&A, 477, 573
| Crossref | GoogleScholarGoogle Scholar |
Simard-Normandin, M. and Kronberg, P. P., 1979, Nature, 279, 115
| Crossref | GoogleScholarGoogle Scholar |
Simard-Normandin, M. and Kronberg, P. P., 1980, ApJ, 242, 74
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXjvFeltg%3D%3D&md5=187d9e0081e4675f39f10db3b65e73b5CAS |
Simard-Normandin, M., Kronberg, P. P. and Button, S., 1981, ApJS, 45, 97
| Crossref | GoogleScholarGoogle Scholar |
Taylor, A. R., Stil, J. M. and Sunstrum, C., 2009, ApJ, 702, 1230
| Crossref | GoogleScholarGoogle Scholar |
Vallée, J. P., 2008, ApJ, 681, 303
| Crossref | GoogleScholarGoogle Scholar |
Vallée, J. P., 1992, A&A, 255, 100
Van Eck, C. L., Brown, J. C., Stil, J. M., Rae, K., Gaensler, B. M., Shukurov, A., Taylor, A. R., Haverkorn, M., Kronberg, P. P. and McClure-Griffiths, N. M., 2011, ApJ, 728, 97
| Crossref | GoogleScholarGoogle Scholar |
Weisberg, J. M., Cordes, J. M., Kuan, B., Devine, K. E., Green, J. T. and Backer, D. C., 2004, ApJS, 150, 317
| Crossref | GoogleScholarGoogle Scholar |