Trapped and Escaping Orbits in an Axially Symmetric Galactic-Type Potential
Euaggelos E. ZotosDepartment of Physics, Section of Astrophysics, Astronomy and Mechanics, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece. Email: evzotos@astro.auth.gr
Publications of the Astronomical Society of Australia 29(2) 161-173 https://doi.org/10.1071/AS12008
Submitted: 19 January 2012 Accepted: 4 March 2012 Published: 4 April 2012
Abstract
In the present article, we investigate the behavior of orbits in a time-independent axially symmetric galactic-type potential. This dynamical model can be considered to describe the motion in the central parts of a galaxy, for values of energies larger than the energy of escape. We use the classical surface-of-section method in order to visualize and interpret the structure of the phase space of the dynamical system. Moreover, the Lyapunov characteristic exponent is used in order to make an estimation of the degree of chaoticity of the orbits in our galactic model. Our numerical calculations suggest that in this galactic-type potential there are two kinds of orbits: (i) escaping orbits and (ii) trapped orbits, which do not escape at all. Furthermore, a large number of orbits of the dynamical system display chaotic motion. Among the chaotic orbits, there are orbits that escape quickly and also orbits that remain trapped for vast time intervals. When the value of a test particle’s energy slightly exceeds the energy of escape, the number of trapped regular orbits increases as the value of the angular momentum increases. Therefore, the extent of the chaotic regions observed in the phase plane decreases as the energy value increases. Moreover, we calculate the average value of the escape period of chaotic orbits and try to correlate it with the value of the energy and also with the maximum value of the z component of the orbits. In addition, we find that the value of the Lyapunov characteristic exponent corresponding to each chaotic region for different values of energy increases exponentially as the energy increases. Some theoretical arguments are presented in order to support the numerically obtained outcomes.
Keywords: Galaxies: kinematics and dynamics
References
Anosova, J. P., 1986, Ap&SS, 124, 217| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xks1OksLg%3D&md5=c56b105d6bbdbe14557185279bf00b9bCAS |
Benet, L., Trautmann, D. and Seligman, T. H., 1996, CeMDA, 66, 201
Benet, L., Seligman, T. H. and Trautmann, D., 1998, CeMDA, 71, 167
| Crossref | GoogleScholarGoogle Scholar |
Bleher, S., Grebogi, C., Ott, E. and Brown, R., 1988, PhRvA, 38, 930
Caranicolas, N. D., 1990, A&A, 227, 54
Caranicolas, N. D., 2001, JA&A, 22, 309
Caranicolas, N. D. and Innanen, K. A., 1991, AJ, 102, 1343
Caranicolas, N. D. and Papadopoulos, N. J., 2003a, A&A, 399, 957
Caranicolas, N. D. and Papadopoulos, N. J., 2003b, JA&A, 24, 85
Caranicolas, N. D. and Vozikis, Ch. L., 1999, A&A, 349, 70
Caranicolas, N. D. and Vozikis, Ch. L., 2002, MeReC, 29, 91
Caranicolas, N. D. and Zotos, E. E., 2010, AN, 331, 330
Caranicolas, N. D. and Zotos, E. E., 2011a, RAA, 11, 811
Caranicolas, N. D. and Zotos, E. E., 2011b, RAA, 11, 1449
Churchill, R. C., et al., 1979, in Como Conference Proceedings on Stochastic Behavior in Classical and Quantum Hamiltonian Systems, Volume 93, Lecture Notes in Physics, ed. G. Casati & J. Fords (Berlin: Springer), 76
Contopoulos, G., 1990, A&A, 231, 41
Contopoulos, G., 2002, Order and Chaos in Dynamical Astronomy (Berlin: Springer)
Contopoulos, G. and Efstathiou, K., 2004, CeMDA, 88, 163
| Crossref | GoogleScholarGoogle Scholar |
Contopoulos, G. and Harsoula, M., 2005, NYASA, 1045, 139
| Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2Mzislyktw%3D%3D&md5=2716d5d6738eb3445bab0572fbb866e1CAS |
Contopoulos, G. and Kaufmann, D., 1992, A&A, 253, 379
Contopoulos, G. and Patsis, P. A., 2006, MNRAS, 369, 1039
| Crossref | GoogleScholarGoogle Scholar |
Contopoulos, G., Hénon, M. & Lynden-Bell, D., 1973, in Dynamical Structure and Evolution of Stellar Systems, Lectures of the 3rd Advanced Course of the Swiss Society of Astronomy and Astrophysics, ed. G. Contopoulos, M. Hénon & D. Lynden-Bell (Sauverny: Geneva Observatory), 91
Deprit, A. and Elipe, A., 1991, CeMDA, 51, 227
| Crossref | GoogleScholarGoogle Scholar |
Elipe, A., 2001, Math. Comp. Sim., 57, 217
| Crossref | GoogleScholarGoogle Scholar |
Elipe, A. and Deprit, A., 1999, MeReC, 26, 635
Fukushige, T. and Heggie, D. C., 2000, MNRAS, 318, 753
| Crossref | GoogleScholarGoogle Scholar |
Irigoyen, M. and Simó, C., 1993, CeMDA, 55, 281
| Crossref | GoogleScholarGoogle Scholar |
Kalnajs, A. J., 1973, PASA, 2, 174
Kandrup, H., Siopis, Ch., Contopoulos, G. and Dvorak, R., 1999, Chaos, 9, 381
| Crossref | GoogleScholarGoogle Scholar |
Karanis, G. I. and Caranicolas, N. D., 2002, AN, 323, 3
Komatsu, E. et al., 2011, ApJS, 192, 18
| Crossref | GoogleScholarGoogle Scholar |
Lichtenberg, A. J. & Lieberman, M. A., 1992, Regular and Chaotic Dynamics (2nd ed.; Berlin: Springer)
Maciejewski, W. and Athanassoula, E., 2007, MNRAS, 380, 999
| Crossref | GoogleScholarGoogle Scholar |
Papadopoulos, N. J. and Caranicolas, N. D., 2007, A&AT, 26, 301
Romero-Gómez, M., Athanassoula, E., Antoja, T. and Figueras, F., 2011, MNRAS, 418, 1176
| Crossref | GoogleScholarGoogle Scholar |
Simó, C. and Stuchi, T. J., 2000, PhyD, 140, 1
Siopis, Ch., Kandrup, H., Contopoulos, G. and Dvorak, R., 1995a, NYASA, 773, 221
| Crossref | GoogleScholarGoogle Scholar |
Siopis, Ch., Contopoulos, G. and Kandrup, H., 1995b, NYASA, 751, 205
| Crossref | GoogleScholarGoogle Scholar |
Siopis, Ch. et al., 1996, CeMDA, 65, 57
| Crossref | GoogleScholarGoogle Scholar |
Tremaine, S. D. and Weinberg, M. D., 1984, MNRAS, 209, 729
Zotos, E. E., 2011a, NewA, 16, 391
| Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVWhurs%3D&md5=01d6717d990fed92d24dd19c4ecda47aCAS |
Zotos, E. E., 2011b, CSF, 44, 501
| Crossref | GoogleScholarGoogle Scholar |