Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Publications of the Astronomical Society of Australia Publications of the Astronomical Society of Australia Society
Publications of the Astronomical Society of Australia
RESEARCH ARTICLE

Maser Source-Finding Methods in HOPS

A. J. Walsh A F , C. Purcell B , S. Longmore C , C. H. Jordan A D and V. Lowe D E
+ Author Affiliations
- Author Affiliations

A Centre for Astronomy, School of Engineering and Physical Sciences, James Cook University, Townsville, QLD 4814, Australia

B School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK

C European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany

D CSIRO Astronomy and Space Science, PO BOX 76, Epping, NSW 1710, Australia

E School of Physics, University of NSW, Sydney, NSW 2052, Australia

F Corresponding author. Email: andrew.walsh@jcu.edu.au

Publications of the Astronomical Society of Australia 29(3) 262-268 https://doi.org/10.1071/AS11062
Submitted: 21 October 2011  Accepted: 24 November 2011   Published: 16 December 2011

Abstract

The H2O Southern Galactic Plane Survey (HOPS) has observed 100 deg2 of the Galactic plane, using the Mopra radio telescope to search for emission from multiple spectral lines in the 12-mm band (19.5–27.5 GHz). Perhaps the most important of these spectral lines is the 22.2-GHz water-maser transition. We describe the methods used to identify water-maser candidates and subsequent confirmation of the sources. Our methods involve a simple determination of likely candidates by searching peak emission maps, utilising the intrinsic nature of water-maser emission, spatially unresolved and spectrally narrow-lined. We estimate completeness limits and compare our method with results from the duchamp source finder. We find that the two methods perform similarly. We conclude that the similarity in performance is due to the intrinsic limitation of the noise characteristics of the data. The advantages of our method are that it is slightly more efficient in eliminating spurious detections and is simple to implement. The disadvantage is that it is a manual method of finding sources and so is not practical on datasets much larger than HOPS, or for datasets with extended emission that needs to be characterised. We outline a two-stage method for the most efficient means of finding masers, using duchamp.

Keywords: masers — stars: formation — surveys — techniques: spectroscopic


References

Barlow, M. J. et al., 1996, A&AL, 315, 341

Caswell, J. L. et al., 2010, MNRAS, 404, 1029
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXns1Chtb4%3D&md5=1db507fa49ff18096bf09de2d8040827CAS |

Cheung, A. C., Rank, D. M. and Townes, C. H., 1969, Nature, 221, 626
Crossref | GoogleScholarGoogle Scholar |

Claussen, M. J. et al., 1984, ApJL, 285, 79
Crossref | GoogleScholarGoogle Scholar |

Claussen, M. J., Wilking, B. A., Benson, P. J., Wootten, A., Myers, P. C. and Terebey, S., 1996, ApJS, 106, 111
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlvFehu7k%3D&md5=9b0e0cff7d4dfab996ee01031a604cccCAS |

Dickinson, D. F., 1976, ApJS, 30, 259
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktFahsr4%3D&md5=0d957a913684da5c564fa883e09883c1CAS |

Egan, M. P. and Price, S. D., 1996, AJ, 112, 2862

Forster, J. R. and Caswell, J. L., 1999, A&AS, 137, 43
| 1:CAS:528:DyaK1MXktlSmsrY%3D&md5=37a7ccf325ed704440677a891b6f27d1CAS |

Forster, J. R. and Caswell, J. L., 2000, ApJ, 530, 371
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXitVKqur4%3D&md5=ae7c3b3c6518390567532fde64f4f52dCAS |

Gundermann, E., 1965, PhD Thesis, Harvard University, Cambridge, MA, USA

Hinkle, K. H. and Barnes, T. G., 1979, ApJ, 227, 923
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhtlSntbY%3D&md5=b08c923c82b874911c30d4ebc545cbfaCAS |

Johnston, S. et al., 2007, PASA, 24, 174
Crossref | GoogleScholarGoogle Scholar |

Miranda, L. F., G'omez, Y., Anglada, G. and Torrelles, J. M., 2001, Nature, 414, 284
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFaqu7s%3D&md5=efc3ab3af06b2f88d1856aa99515897fCAS |

Purcell, C. R. et al., 2011, MNRAS, ,

Voronkov, M. A., Sobolev, A. M., Ellingsen, S. P. and Ostrovskii, A. B., 2005, MNRAS, 362, 995
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFeksLvK&md5=89fe8b44771d3f7ca7b5974a692728a2CAS |

Walsh, A. J., Burton, M. G., Hyland, A. R. and Robinson, G., 1998, MNRAS, 301, 640
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmtVOjtA%3D%3D&md5=7e8bdff57aa79d13dbadd4071e333c70CAS |

Walsh, A. J., Myers, P. C., Di Francesco, J., Mohanty, S., Bourke, T. L., Gutermuth, R. and Wilner, D., 2007, ApJ, 655, 958
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVKgtLs%3D&md5=3c6336758c52418ede8447c09fd865d3CAS |

Walsh, A. J., Lo, N., Burton, M. G., White, G. L., Purcell, C. R., Longmore, S. N., Phillips, C. J. and Brooks, K. J., 2008, PASA, 25, 105
Crossref | GoogleScholarGoogle Scholar |

Walsh, A. J. et al., 2011, MNRAS, 416, 1764
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlers7vK&md5=d4d538e2e12f80ecd59cd7dc14223e09CAS |

Weaver, H., Williams, D. R. W., Dieter, N. H. and Lum, W. T., 1965, Nature, 208, 29
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28Xot12j&md5=0bd648ce0fbc8df96df61f89b3889184CAS |

Whiting, M., 2011, MNRAS, ,

Williams, J. P., de Geus, E. J. and Blitz, L., 1994, ApJ, 428, 693
Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXms1Kqt7k%3D&md5=2a9f4df33607fde8468139c3357c2eb0CAS |