The Optic Chiasm of Australian Marsupials
AM Harman
Australian Journal of Zoology
43(5) 467 - 477
Published: 1995
Abstract
The optic chiasm of mammals is the region of the nervous system in which optic axons have a choice of route, either they enter the optic tract on the same side of the brain or they cross the chiasm and enter the opposite optic tract. in eutherian (placental) mammals, axons approach the midline of the chiasm and then either continue across the chiasm or turn back to enter the tract on the same side of the brain. The midline of the chiasm provides guidance cues that repel uncrossed but not crossed axons. However, it has recently been shown that in a marsupial, the quokka wallaby, axons destined to stay on the same side of the brain remain in the lateral part of the optic nerve and chiasm and never approach the midline. The structure of the chiasm reflects this partitioning of axons with different routes by having a tripartite structure. The two lateral regions contain only uncrossed axons in rostral chiasmatic regions and the central region contains only crossed axons. Therefore, axons passing through the chiasm of this species must use guidance cues that differ from those of eutherian mammals. Here I show that the chiasms of species of both diprotodont and polyprotodont Australian marsupials have a similar tripartite structure and that uncrossed axons are confined to lateral regions. It seems likely, therefore, that the chiasm of marsupials has fundamental differences in structure and optic axon trajectory compared with that of eutherian mammals studied to date.https://doi.org/10.1071/ZO9950467
© CSIRO 1995