Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE (Open Access)

Geographic frequency and ecological correlates of juvenile colour polymorphism in green pythons (Morelia azurea and Morelia viridis)

Daniel J. D. Natusch https://orcid.org/0000-0002-3275-518X A B C and Jessica A. Lyons B
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

B EPIC Biodiversity, Frogs Hollow, NSW 2550, Australia.

C Corresponding author. Email: d.natusch@epicbiodiversity.com

Australian Journal of Zoology 68(2) 62-67 https://doi.org/10.1071/ZO21002
Submitted: 2 February 2021  Accepted: 9 April 2021   Published: 10 May 2021

Journal Compilation © CSIRO 2020 Open Access CC BY-NC

Abstract

Colour polymorphisms are common in nature, but their evolutionary significance and the mechanisms maintaining them sometimes remain poorly understood. Polymorphic green pythons (Morelia azurea and Morelia viridis) are born either red or yellow. Several processes are proposed to maintain such polymorphisms, and the assumption that colour is adaptive predicts that it may be correlated with a series of life-history and/or ecological traits. We examined 1090 green pythons from northern Australia and New Guinea and reveal strong geographic variation in the frequency of juvenile polymorphism. Some variation is explained by known genetic structure among populations, while stochastic processes (e.g. bottlenecks, founder effects) likely explain remaining variation. The yellow juvenile morph occurs in all populations of M. azurea and M. viridis, whereas the red morph occurs only in some populations of M. azurea and at varying frequencies. Yellow and red juveniles did not differ in morph-specific survival, sex ratios, morphology (tail length, head shape and mass) or diet. We discuss our results in relation to several hypotheses relating to maintenance of colour polymorphisms in nature. Although inconclusive, we are reluctant to suggest that colour is non-adaptive, and encourage additional experimental field research on the significance of polymorphism in these taxa.

Keywords: Australia, Biak Island, geographic variation, green python, natural selection, Morelia azurea, Morelia viridis, New Guinea, niche divergence, snake


References

Allen, J. A. (1988). Frequency-dependent selection by predators. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 319, 485–503.
| 2905488PubMed |

Beehler, B. M. (2007). Papuan terrestrial biogeography, with special reference to birds. In ‘The Ecology of Papua’. (Eds A. J. Marshall, and B. M. Beehler.) pp. 196–206. (Periplus Editions: Singapore.)

Brakefield, P. M. (1990). Genetic drift and patterns of diversity among colour-polymorphic populations of the homopteran Philaenus spumarius in an island archipelago. Biological Journal of the Linnean Society 39, 219–237.
Genetic drift and patterns of diversity among colour-polymorphic populations of the homopteran Philaenus spumarius in an island archipelago.Crossref | GoogleScholarGoogle Scholar |

Brodie, E. D. (1992). Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 46, 1284–1298.
Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides.Crossref | GoogleScholarGoogle Scholar | 28568995PubMed |

Cott, H. B. (1940). ‘Adaptive Coloration in Animals.’ (Methuen and Co: United Kingdom.)

Darwin, C. (1859). ‘On the Origin of Species by Means of Natural Selection.’ (Murray: United Kingdom.)

Deiner, K., Lemmon, A. R., Mack, A. L., Fleischer, R. C., and Dumbacher, J. P. (2011). A passerine bird’s evolution corroborates the geologic history of the island of New Guinea. PLoS One 6, e19479.
A passerine bird’s evolution corroborates the geologic history of the island of New Guinea.Crossref | GoogleScholarGoogle Scholar | 21573115PubMed |

Endler, J. A. (1986). ‘Natural Selection in the Wild.’ (Princeton University Press: United States of America.)

Galeotti, P., Rubolini, D., Dunn, P. O., and Fasola, M. (2003). Colour polymorphism in birds: causes and functions. Journal of Evolutionary Biology 16, 635–646.
Colour polymorphism in birds: causes and functions.Crossref | GoogleScholarGoogle Scholar | 14632227PubMed |

Garrett, C. M., and Smith, B. E. (1994). Perch color preference in juvenile green tree pythons, Chondropython viridis. Zoo Biology 13, 45–50.
Perch color preference in juvenile green tree pythons, Chondropython viridis.Crossref | GoogleScholarGoogle Scholar |

Gray, S. M., and McKinnon, J. S. (2007). Linking color polymorphism maintenance and speciation. Trends in Ecology & Evolution 22, 71–79.
Linking color polymorphism maintenance and speciation.Crossref | GoogleScholarGoogle Scholar |

Hoffman, E. A., and Blouin, M. S. (2000). A review of colour and pattern polymorphisms in anurans. Biological Journal of the Linnean Society 70, 633–665.
A review of colour and pattern polymorphisms in anurans.Crossref | GoogleScholarGoogle Scholar |

Huxley, J. (1955). Morphism in birds. Acta International Congress in Ornithology 11, 309–328.

Johnston, G. R. (1996). Genetic and seasonal variation in body colour of the Australian death adder, Acanthophis antarcticus (Squamata: Elapidae). Journal of Zoology 239, 187–196.
Genetic and seasonal variation in body colour of the Australian death adder, Acanthophis antarcticus (Squamata: Elapidae).Crossref | GoogleScholarGoogle Scholar |

King, R. B. (2003). Mendelian inheritance of melanism in the garter snake Thamnophis sirtalis. Herpetologica 59, 484–489.
Mendelian inheritance of melanism in the garter snake Thamnophis sirtalis.Crossref | GoogleScholarGoogle Scholar |

King, R. B., and Lawson, R. (1995). Color pattern variation in Lake Erie water snakes: the role of gene flow. Evolution 49, 885–896.
Color pattern variation in Lake Erie water snakes: the role of gene flow.Crossref | GoogleScholarGoogle Scholar | 28564875PubMed |

Kingston, J. J., Rosenthal, G. G., and Ryan, M. J. (2003). The role of sexual selection in maintaining a colour polymorphism in the pygmy swordtail, Xiphophorus pygmaeus. Animal Behaviour 65, 735–743.
The role of sexual selection in maintaining a colour polymorphism in the pygmy swordtail, Xiphophorus pygmaeus.Crossref | GoogleScholarGoogle Scholar |

Lyons, J. A., and Natusch, D. J. D. (2011). Wildlife laundering through breeding farms: illegal harvest, population declines and a means of regulating the trade of green pythons (Morelia viridis) from Indonesia. Biological Conservation 144, 3073–3081.
Wildlife laundering through breeding farms: illegal harvest, population declines and a means of regulating the trade of green pythons (Morelia viridis) from Indonesia.Crossref | GoogleScholarGoogle Scholar |

Maxwell, G. (2005). ‘The More Complete Chondro.’ (Eco Publishing: United States of America.)

Natusch, D. J. D., and Lyons, J. A. (2012). Relationships between ontogenetic changes in prey selection, trophic structure, sexual maturity and colour in an Australasian python (Morelia viridis). Biological Journal of the Linnean Society 107, 269–276.
Relationships between ontogenetic changes in prey selection, trophic structure, sexual maturity and colour in an Australasian python (Morelia viridis).Crossref | GoogleScholarGoogle Scholar |

Natusch, D. J. D., and Lyons, J. A. (2014). Geographic and sexual variations in body size, morphology and diet among five populations of green pythons (Morelia viridis). Journal of Herpetology 48, 317–323.
Geographic and sexual variations in body size, morphology and diet among five populations of green pythons (Morelia viridis).Crossref | GoogleScholarGoogle Scholar |

Natusch, D. J. D., and Natusch, D. F. S. (2011). Distribution, abundance and demography of green pythons (Morelia viridis) in Cape York Peninsula, Australia. Australian Journal of Zoology 59, 145–155.
Distribution, abundance and demography of green pythons (Morelia viridis) in Cape York Peninsula, Australia.Crossref | GoogleScholarGoogle Scholar |

Natusch, D. J. D., Esquerré, D., Lyons, J. A., Hamidy, A., Lemmon, A. R., Moriarty-Lemmon, E., Riyanto, A., Scott Keogh, J., and Donnellan, S. (2020). Species delimitation and systematics of the green pythons (Morelia viridis complex) of Melanesia and Australia. Molecular Phylogenetics and Evolution 142, 106640.
Species delimitation and systematics of the green pythons (Morelia viridis complex) of Melanesia and Australia.Crossref | GoogleScholarGoogle Scholar |

O’Shea, M. (1996). ‘A Guide to the Snakes of Papua New Guinea.’ (Independent Publishing Group: Papua New Guinea.)

Olendorf, R., Rodd, F. H., Punzalan, D., Houde, A. E., Hurt, C., Reznick, D. N., and Hughes, K. A. (2006). Frequency-dependent survival in natural guppy populations. Nature 441, 633–636.
Frequency-dependent survival in natural guppy populations.Crossref | GoogleScholarGoogle Scholar | 16738659PubMed |

Reillo, P. R., and Wise, D. H. (1988). An experimental evaluation of selection on color morphs of the polymorphic spider Enoplognatha ovata (Araneae: Theridiidae). Evolution 42, 1172–1189.
An experimental evaluation of selection on color morphs of the polymorphic spider Enoplognatha ovata (Araneae: Theridiidae).Crossref | GoogleScholarGoogle Scholar | 28581089PubMed |

Roulin, A. (2004). The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biological Reviews of the Cambridge Philosophical Society 79, 815–848.
The evolution, maintenance and adaptive function of genetic colour polymorphism in birds.Crossref | GoogleScholarGoogle Scholar | 15682872PubMed |

Shine, R., Ambariyanto, , Harlow, P. S., and Mumpuni, (1998). Ecological divergence among sympatric colour morphs in blood pythons, Python brogersmai. Oecologia 116, 113–119.
Ecological divergence among sympatric colour morphs in blood pythons, Python brogersmai.Crossref | GoogleScholarGoogle Scholar | 28308515PubMed |

Voris, H. K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27, 1153–1167.
Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations.Crossref | GoogleScholarGoogle Scholar |

Wilson, D., Heinsohn, R., and Legge, S. (2006). Age and sex-related differences in the spatial ecology of a dichromatic tropical python (Morelia viridis). Austral Ecology 31, 577–587.
Age and sex-related differences in the spatial ecology of a dichromatic tropical python (Morelia viridis).Crossref | GoogleScholarGoogle Scholar |

Wilson, D., Heinsohn, R., and Endler, J. (2007). The adaptive significance of ontogenetic colour change in a tropical python. Biology Letters 3, 40–43.
The adaptive significance of ontogenetic colour change in a tropical python.Crossref | GoogleScholarGoogle Scholar | 17443961PubMed |

Zweifel, R. G. (1981). Genetics of color pattern polymorphism in the California kingsnake. The Journal of Heredity 72, 238–244.
Genetics of color pattern polymorphism in the California kingsnake.Crossref | GoogleScholarGoogle Scholar |