Phylogeography of southern brown and golden bandicoots: implications for the taxonomy and distribution of endangered subspecies and species
Steven J. B. Cooper A B L , Kym Ottewell C , Anna J. MacDonald D E F , Mark Adams A B F , Margaret Byrne C , Susan M. Carthew G , Mark D. B. Eldridge H , You Li I , Lisa C. Pope J , Kathleen M. Saint B and Michael Westerman KA Australian Centre for Evolutionary Biology and Biodiversity and School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
B Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.
C Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6151, Australia.
D The John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia.
E Research School of Biology, The Australian National University, Acton, ACT 2601, Australia.
F Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.
G Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia.
H Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.
I School of Life Sciences and Engineering and Biomedical Research Centre, Northwest Minzu University, Lanzhou, Gansu 730030, China.
J Institute for Social Science Research, Queensland University, Indooroopilly, Qld 4068, Australia.
K Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Vic. 3086, Australia.
L Corresponding author. Email: steve.cooper@samuseum.sa.gov.au
Australian Journal of Zoology 66(6) 379-393 https://doi.org/10.1071/ZO19052
Submitted: 30 July 2019 Accepted: 27 November 2019 Published: 8 January 2020
Abstract
Southern brown (Isoodon obesulus) and golden (Isoodon auratus) bandicoots are iconic Australian marsupials that have experienced dramatic declines since European settlement. Conservation management programs seek to protect the remaining populations; however, these programs are impeded by major taxonomic uncertainties. We investigated the history of population connectivity to inform subspecies and species boundaries through a broad-scale phylogeographic and population genetic analysis of Isoodon taxa. Our analyses reveal a major east–west phylogeographic split within I. obesulus/I. auratus, supported by both mtDNA and nuclear gene analyses, which is not coincident with the current species or subspecies taxonomy. In the eastern lineage, all Tasmanian samples formed a distinct monophyletic haplotype group to the exclusion of all mainland samples, indicative of long-term isolation of this population from mainland Australia and providing support for retention of the subspecific status of the Tasmanian population (I. o. affinis). Analyses further suggest that I. o. obesulus is limited to south-eastern mainland Australia, representing a significant reduction in known range. However, the analyses provide no clear consensus on the taxonomic status of bandicoot populations within the western lineage, with further analyses required, ideally incorporating data from historical museum specimens to fill distributional gaps.
Additional keywords: Isoodon auratus, Isoodon obesulus.
References
Adams, M., Page, T. J., Hurwood, D. A., and Hughes, J. M. (2013). A molecular assessment of species boundaries and phylogenetic affinities in Mogurnda (Eleotridae): a case study of cryptic biodiversity in the Australian freshwater fishes. Marine and Freshwater Research 64, 920–993.| A molecular assessment of species boundaries and phylogenetic affinities in Mogurnda (Eleotridae): a case study of cryptic biodiversity in the Australian freshwater fishes.Crossref | GoogleScholarGoogle Scholar |
Adams, M., Raadik, T. A., Burridge, C., and Georges, A. (2014). Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room? Systematic Biology 63, 518–533.
| Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room?Crossref | GoogleScholarGoogle Scholar | 24627185PubMed |
Amrine-Madsen, H., Scally, M., Westerman, M., Stanhope, M. J., Krajewski, C., and Springer, M. S. (2003). Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials. Molecular Phylogenetics and Evolution 28, 186–196.
| Nuclear gene sequences provide evidence for the monophyly of australidelphian marsupials.Crossref | GoogleScholarGoogle Scholar | 12878458PubMed |
Aulsebrook, A. (2018). Back from the brink: crowdfunding for the genetic rescue of eastern barred bandicoots. Remember the Wild. Available at: http://www.rememberthewild.org.au/
Avise, J. C. (1994). ‘Molecular Markers, Natural History and Evolution.’ (Chapman and Hall: New York.)
Avise, J. C., and Bull, R. M. J. (1990). Principles of genealogical concordance in species concepts and biological taxonomy. Oxford Surveys in Evolutionary Biology 7, 45–67.
Bragg, J. G., Potter, S., Bi, K., Catullo, R., Donnellan, S. C., Eldridge, M. D. B., Joseph, L., Keogh, S., Oliver, P., Rowe, K. C., and Moritz, C. (2017). Resources for phylogenomic analyses of Australian terrestrial vertebrates. Molecular Ecology Resources 17, 869–876.
| 27863094PubMed |
Burbidge, A. A., and McKenzie, N. L. (1989). Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications. Biological Conservation 50, 143–198.
| Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications.Crossref | GoogleScholarGoogle Scholar |
Burgin, C. J., Colella, J. P., Kahn, P. L., and Upham, N. S. (2018). How many species of mammals are there? Journal of Mammalogy 99, 1–14.
| How many species of mammals are there?Crossref | GoogleScholarGoogle Scholar |
Campbell, C. D., Sarre, S. D., Stojanovic, D., Gruber, B., Medlock, K., Harris, S., MacDonald, A. J., and Holleley, C. E. (2018). When is a native species invasive? Incursion of a novel predatory marsupial detected using molecular and historical data. Diversity & Distributions 24, 831–840.
| When is a native species invasive? Incursion of a novel predatory marsupial detected using molecular and historical data.Crossref | GoogleScholarGoogle Scholar |
Close, R. L., Murray, J. D., and Briscoe, D. A. (1990). Electrophoretic and chromosome surveys of the taxa of short-nosed bandicoots within the genus Isoodon. In ‘Bandicoots and Bilbies’. (Eds J. H. Seebeck, P. R. Brown, R. L. Wallis, and C. M. Kemper.) pp. 19–27. (Surrey Beatty: Sydney.)
Coates, T, Nicholls, D, and Willig, R (2008). The distribution of the Southern Brown Bandicoot Isoodon Obesulus in south central Victoria. The Victorian Naturalist 125, 128–139.
Department of Environment and Conservation (NSW) (2006). Southern Brown Bandicoot (Isoodon obesulus) recovery plan, Hurstville, NSW. Available at: https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Animals-and-plants/Recovery-plans/southern-brown-bandicoot-isoodon-obesulus-recovery-plan.pdf
Driessen, M. M., and Rose, R. K. (2015). Isoodon obesulus (Peramelemorphia: Peramelidae). Mammalian Species 47, 112–123.
| Isoodon obesulus (Peramelemorphia: Peramelidae).Crossref | GoogleScholarGoogle Scholar |
Eldridge, M. D. B., Deakin, J. E., MacDonald, A. J., Byrne, M., Fitzgerald, A., Johnson, R. N., Moritz, C., Palmer, S., and Young, A. (2019). The Oz Mammals Genomics (OMG) initiative: developing genomic resources for mammal conservation at a continental scale. Australian Zoologist, , .
Ely, C. V., Bordignon, S. A. de L., Trevisanc, R., and Boldrini, I. I. (2017). Implications of poor taxonomy in conservation. Journal for Nature Conservation 36, 10–13.
| Implications of poor taxonomy in conservation.Crossref | GoogleScholarGoogle Scholar |
Excoffier, L., and Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
| Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar | 21565059PubMed |
Frankham, R., Ballou, J. D., Eldridge, M. D. B., Lacy, R. C., Ralls, K., Dudash, M. R., and Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology 25, 465–475.
| Predicting the probability of outbreeding depression.Crossref | GoogleScholarGoogle Scholar | 21486369PubMed |
Frankham, G. J., Handasyde, K. A., and Eldridge, M. D. B. (2016). Evolutionary and contemporary responses to habitat fragmentation detected in a mesic zone marsupial, the long-nosed potoroo (Potorous tridactylus) in south-eastern Australia. Journal of Biogeography 43, 653–665.
| Evolutionary and contemporary responses to habitat fragmentation detected in a mesic zone marsupial, the long-nosed potoroo (Potorous tridactylus) in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |
Fu, Y.-X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.
| 9335623PubMed |
Fumagalli, L., Pope, L. C., Taberlet, P., and Moritz, C. (1997). Versatile primers for the amplification of the mitochondrial DNA control region in marsupials. Molecular Ecology 6, 1199–1201.
| Versatile primers for the amplification of the mitochondrial DNA control region in marsupials.Crossref | GoogleScholarGoogle Scholar | 9421920PubMed |
Groves, C. P. (2005). Order Peramelemorphia. In ‘Mammal Species of the World: A Taxonomic and Geographic Reference’. 3rd edn. (Eds D. E. Wilson, and D. M. Reeder.) pp. 38–42. (Johns Hopkins University Press: Baltimore.)
Gutiérrez, E. E., and Helgen, K. M. (2013). Outdated taxonomy blocks conservation. Nature 495, 314.
| Outdated taxonomy blocks conservation.Crossref | GoogleScholarGoogle Scholar | 23518556PubMed |
Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160–174.
| Dating of the human–ape splitting by a molecular clock of mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 3934395PubMed |
Hey, J. (2010). Isolation with migration models for more than two populations. Molecular Biology and Evolution 27, 905–920.
| Isolation with migration models for more than two populations.Crossref | GoogleScholarGoogle Scholar | 19955477PubMed |
Ho, S. Y. W., Lanfear, R., Bromham, L., Phillips, M. J., Soubrier, J., Rodrigo, A. G., and Cooper, A. (2011). Time-dependent rates of molecular evolution. Molecular Ecology 20, 3087–3101.
| Time-dependent rates of molecular evolution.Crossref | GoogleScholarGoogle Scholar |
Jackson, S. M., and Groves, C. P. (2015). ‘Taxonomy of Australian Mammals.’ (CSIRO Publishing: Melbourne.)
Kingman, J. F. C. (2000). Origins of the coalescent 1974–1982. Genetics 156, 1461–1463.
Kizirian, D., and Donnelly, M. A. (2004). The criterion of reciprocal monophyly and classification of nested diversity at the species level. Molecular Phylogenetics and Evolution 32, 1072–1076.
| The criterion of reciprocal monophyly and classification of nested diversity at the species level.Crossref | GoogleScholarGoogle Scholar | 15288076PubMed |
Laerm, J., Avise, J. C., Patton, J. C., and Lansman, R. A. (1982). Genetic determination of the status of an endangered species of pocket gopher in Georgia. The Journal of Wildlife Management 46, 513–518.
| Genetic determination of the status of an endangered species of pocket gopher in Georgia.Crossref | GoogleScholarGoogle Scholar |
Legge, S., Woinarski, J. C. Z., Burbidge, A. A., Palmer, R., Ringma, J., Radford, J. Q., Mitchell, N., Bode, M., Wintle, B., Baseler, M., Bentley, J., Copley, P., Dexter, N., Dickman, C. R., Gillespie, G. R., Hill, B., Johnson, C. N., Latch, P., Letnic, M., Manning, A., McCreless, E. E., Menkhorst, P., Morris, K., Moseby, K., Page, M., Pannell, D., and Tuft, K. (2018). Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildlife Research 45, 627–644.
| Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators.Crossref | GoogleScholarGoogle Scholar |
Li, Y., Lancaster, M. L., Carthew, S. M., Packer, J. G., and Cooper, S. J. B. (2014). Delineation of conservation units in an endangered marsupial, the southern brown bandicoot (Isoodon obesulus obesulus) in South Australia/western Victoria, Australia. Australian Journal of Zoology 62, 345–359.
| Delineation of conservation units in an endangered marsupial, the southern brown bandicoot (Isoodon obesulus obesulus) in South Australia/western Victoria, Australia.Crossref | GoogleScholarGoogle Scholar |
Li, Y., Lancaster, M. L., Cooper, S. J. B., Taylor, A. C., and Carthew, S. M. (2015). Population structure and gene flow in the endangered southern brown bandicoot (Isoodon obesulus obesulus) across a fragmented landscape. Conservation Genetics 16, 331–345.
| Population structure and gene flow in the endangered southern brown bandicoot (Isoodon obesulus obesulus) across a fragmented landscape.Crossref | GoogleScholarGoogle Scholar |
Li, Y., Cooper, S. J. B., Lancaster, M. L., Packer, J. G., and Carthew, S. M. (2016). Comparative population genetic structure of the endangered southern brown bandicoot, Isoodon obesulus, in fragmented landscapes of southern Australia. PLoS One 11, e0152850.
| Comparative population genetic structure of the endangered southern brown bandicoot, Isoodon obesulus, in fragmented landscapes of southern Australia.Crossref | GoogleScholarGoogle Scholar | 28036354PubMed |
Lyne, A. G., and Mort, P. A. (1981). Comparison of skull morphology in the marsupial bandicoot genus Isoodon: its taxonomic implications and notes on a new species, Isoodon arnhemensis. Australian Mammalogy 4, 107–133.
MacDonald, A. J., and Sarre, S. D. (2017). A framework for developing and validating taxon-specific primers for specimen identification from environmental DNA. Molecular Ecology Resources 17, 708–720.
| A framework for developing and validating taxon-specific primers for specimen identification from environmental DNA.Crossref | GoogleScholarGoogle Scholar | 27768246PubMed |
MacDonald, A. J., Sarre, S. D., FitzSimmons, N. N., and Aitken, N. (2011). Determining microsatellite genotyping reliability and mutation detection ability: an approach using small-pool PCR from sperm DNA. Molecular Genetics and Genomics 285, 1–18.
| Determining microsatellite genotyping reliability and mutation detection ability: an approach using small-pool PCR from sperm DNA.Crossref | GoogleScholarGoogle Scholar | 20957392PubMed |
Mace, G. M. (2004). The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 711–719.
| The role of taxonomy in species conservation.Crossref | GoogleScholarGoogle Scholar | 15253356PubMed |
McKenzie, N. L., Burbidge, A. A., Baynes, A., Brereton, R. N., Dickman, C. R., Gordon, G., Gibson, L. A., Menkhorst, P. W., Robinson, A. C., Williams, M. R., and Woinarski, J. C. Z. (2007). Analysis of factors implicated in the recent decline of Australia’s mammal fauna. Journal of Biogeography 34, 597–611.
| Analysis of factors implicated in the recent decline of Australia’s mammal fauna.Crossref | GoogleScholarGoogle Scholar |
Menkhorst, P., and Knight, F. (2011) ‘A Field Guide to the Mammals of Australia.’ (Oxford University Press: Melbourne.)
Meredith, R. W., Westerman, M., and Springer, M. S. (2008). A timescale and phylogeny for “bandicoots” (Peramelemorphia: Marsupialia) based on sequences for five nuclear genes. Molecular Phylogenetics and Evolution 47, 1–20.
| A timescale and phylogeny for “bandicoots” (Peramelemorphia: Marsupialia) based on sequences for five nuclear genes.Crossref | GoogleScholarGoogle Scholar | 18328736PubMed |
Moritz, C (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology and Evolution 9, 373–375.
| Defining ‘Evolutionarily Significant Units’ for conservation.Crossref | GoogleScholarGoogle Scholar | 21236896PubMed |
Morris, K., Page, M., Kay, R., Renwick, J., Desmond, A., Comer, S., Burbidge, A., Kuchling, G., and Sims, C. (2015). Forty years of fauna translocations in Western Australia: lessons learned. In ‘Advances in Reintroduction Biology of Australian and New Zealand Fauna’. (Eds D. P. Armstrong, M. W. Hayward, D. Moro, and P. J. Seddon.) pp. 217–235. (CSIRO Publishing: Melbourne.)
Moseby, K. E., Hill, B. M., and Read, J. L. (2009). Arid recovery – a comparison of reptile and small mammal populations inside and outside a large rabbit, cat, and fox-proof exclosure in arid South Australia. Austral Ecology 34, 156–169.
| Arid recovery – a comparison of reptile and small mammal populations inside and outside a large rabbit, cat, and fox-proof exclosure in arid South Australia.Crossref | GoogleScholarGoogle Scholar |
Osborne, M. J., and Christidis, L. (2001). Molecular phylogenetics of Australo-Papuan possums and gliders (family Petauridae). Molecular Phylogenetics and Evolution 20, 211–224.
| Molecular phylogenetics of Australo-Papuan possums and gliders (family Petauridae).Crossref | GoogleScholarGoogle Scholar | 11476630PubMed |
Ottewell, K., Dunlop, J., Thomas, N., Morris, K., Coates, D., and Byrne, M. (2014). Evaluating success of translocations in maintaining genetic diversity in a threatened mammal. Biological Conservation 171, 209–219.
| Evaluating success of translocations in maintaining genetic diversity in a threatened mammal.Crossref | GoogleScholarGoogle Scholar |
Paull, D. J. (1993). The distribution, ecology and conservation status of the Southern Brown Bandicoot (Isoodon obesulus obesulus) in South Australia. MA Thesis, University of Adelaide.
Paull, D. J. (1995). The distribution of the southern brown bandicoot (Isoodon obesulus obesulus) in South Australia. Wildlife Research 22, 585–600.
| The distribution of the southern brown bandicoot (Isoodon obesulus obesulus) in South Australia.Crossref | GoogleScholarGoogle Scholar |
Paull, D. J., Mills, D. J., and Claridge, A. W. (2013). Fragmentation of the southern brown bandicoot Isoodon obesulus: unraveling past climate change from vegetation clearing. International Journal of Ecology 2013, 536524.
| Fragmentation of the southern brown bandicoot Isoodon obesulus: unraveling past climate change from vegetation clearing.Crossref | GoogleScholarGoogle Scholar |
Pedler, R. D., West, R. S., Read, J. L., Moseby, K. E., Letnic, M., Keith, D. A., Leggett, K. D., Ryall, S. R., and Kingsford, R. T. (2018). Conservation challenges and benefits of multispecies reintroductions to a national park – a case study from New South Wales, Australia. Pacific Conservation Biology 24, 397–408.
| Conservation challenges and benefits of multispecies reintroductions to a national park – a case study from New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |
Pope, L. C., Storch, D., Adams, M., Moritz, C., and Gordon, G. (2001). A phylogeny for the genus Isoodon and a range extension for Isoodon obesulus peninsulae based on mtDNA control region and morphology. Australian Journal of Zoology 49, 411–434.
| A phylogeny for the genus Isoodon and a range extension for Isoodon obesulus peninsulae based on mtDNA control region and morphology.Crossref | GoogleScholarGoogle Scholar |
Potter, S., Moritz, C., and Eldridge, M. D. B. (2015). Gene flow despite complex Robertsonian fusions among rock-wallaby (Petrogale) species. Biology Letters 11, 20150731.
| Gene flow despite complex Robertsonian fusions among rock-wallaby (Petrogale) species.Crossref | GoogleScholarGoogle Scholar | 26445985PubMed |
Potter, S., Bragg, J. G., Blom, M. P. K., Deakin, J. E., Kirkpatrick, M., Eldridge, M. D. B., and Moritz, C. (2017). Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies. Frontiers in Genetics 8, 10.
| Chromosomal speciation in the genomics era: disentangling phylogenetic evolution of rock-wallabies.Crossref | GoogleScholarGoogle Scholar | 28265284PubMed |
Radford, J. Q., Woinarski, J. C. Z., Legge, S., Baseler, M. E., Bentley, J., Burbidge, A. A., Bode, M., Copley, P., Dexter, N., Dickman, C. R., Gillespie, G., Hill, B., Johnson, C. N., Kanowski, J., Latch, P., Letnic, M., Manning, A., Menkhorst, P., Mitchell, N., Morris, K., Moseby, K., Page, M., and Ringma, J. (2018). Degrees of population-level susceptibility of Australian terrestrial non-volant mammal species to predation by the introduced red fox (Vulpes vulpes) and feral cat (Felis catus). Wildlife Research 45, 645–657.
| Degrees of population-level susceptibility of Australian terrestrial non-volant mammal species to predation by the introduced red fox (Vulpes vulpes) and feral cat (Felis catus).Crossref | GoogleScholarGoogle Scholar |
Richardson, B. J., Baverstock, P. R., and Adams, M. (1986). ‘Allozyme Electrophoresis: a Handbook for Animal Systematics and Population Studies.’ (Academic Press: Sydney.)
Robinson, N. M., MacGregor, C. I., Hradsky, B. A., Dexter, N., and Lindenmayer, D. B. (2018). Bandicoots return to Booderee: initial survival, dispersal, home range and habitat preferences of reintroduced southern brown bandicoots (eastern subspecies; Isoodon obesulus obesulus). Wildlife Research 45, 132–142.
| Bandicoots return to Booderee: initial survival, dispersal, home range and habitat preferences of reintroduced southern brown bandicoots (eastern subspecies; Isoodon obesulus obesulus).Crossref | GoogleScholarGoogle Scholar |
Rodríguez, F., Oliver, J. F., Marín, A., and Medina, J. R. (1990). The general stochastic model of nucleotide substitutions. Journal of Theoretical Biology 142, 485–501.
| The general stochastic model of nucleotide substitutions.Crossref | GoogleScholarGoogle Scholar | 2338834PubMed |
Short, J., and Smith, A. P. (1994). Mammal decline and recovery in Australia. Journal of Mammalogy 75, 288–297.
| Mammal decline and recovery in Australia.Crossref | GoogleScholarGoogle Scholar |
Southgate, R, Palmer, C, Adams, M, Masters, P, Triggs, P, and Woinarski, J (1996). Population and habitat characteristics of the golden bandicoot (Isoodon auratus) on Marchinbar Island, Northern Territory. Wildlife Research 23, 647–664.
| Population and habitat characteristics of the golden bandicoot (Isoodon auratus) on Marchinbar Island, Northern Territory.Crossref | GoogleScholarGoogle Scholar |
Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology 57, 758–771.
| A rapid bootstrap algorithm for the RAxML web-servers.Crossref | GoogleScholarGoogle Scholar | 18853362PubMed |
Stephens, M., and Scheet, P. (2005). Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. American Journal of Human Genetics 76, 449–462.
| Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation.Crossref | GoogleScholarGoogle Scholar | 15700229PubMed |
Stephens, M., Smith, N., and Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68, 978–989.
| A new statistical method for haplotype reconstruction from population data.Crossref | GoogleScholarGoogle Scholar | 11254454PubMed |
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
| 2513255PubMed |
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
| MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 24132122PubMed |
Travouillon, K., and Philips, M. J. (2018). Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species. Zootaxa 4378, 224–256.
| Total evidence analysis of the phylogenetic relationships of bandicoots and bilbies (Marsupialia: Peramelemorphia): reassessment of two species and description of a new species.Crossref | GoogleScholarGoogle Scholar | 29690027PubMed |
Warburton, N. M., and Travouillon, K. J. (2016). The biology and palaeontology of the Peramelemorphia: a review of current knowledge and future research directions. Australian Journal of Zoology 64, 151–181.
| The biology and palaeontology of the Peramelemorphia: a review of current knowledge and future research directions.Crossref | GoogleScholarGoogle Scholar |
Weeks, A. R., Sgro, C. M., Young, A. G., Frankham, R., Mitchell, N. J., Miller, K. A., Byrne, M., Coates, D. J., Eldridge, M. D., Sunnucks, P., and Breed, M. F. (2011). Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications 4, 709–725.
| Assessing the benefits and risks of translocations in changing environments: a genetic perspective.Crossref | GoogleScholarGoogle Scholar | 22287981PubMed |
Weeks, A. R., Heinze, D., Perrin, L., Stoklosa, J., Hoffmann, A. A., van Rooyen, A., Kelly, T., and Mansergh, I. (2017). Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nature Communications 8, 1071.
| Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population.Crossref | GoogleScholarGoogle Scholar | 29057865PubMed |
Westerman, M, and Krajewski, C (2000). Molecular relationships of the Australian bandicoot genera Isoodon and Perameles (Marsupialia: Peramelina). Australian Mammalogy 22, 1–8.
| Molecular relationships of the Australian bandicoot genera Isoodon and Perameles (Marsupialia: Peramelina).Crossref | GoogleScholarGoogle Scholar |
Westerman, M, Kear, B. P., Aplin, K, Meredith, R. W., Emerling, C, and Springer, M. S. (2012). Phylogenetic relationships of living and recently extinct bandicoots based on nuclear and mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 62, 97–108.
| Phylogenetic relationships of living and recently extinct bandicoots based on nuclear and mitochondrial DNA sequences.Crossref | GoogleScholarGoogle Scholar | 22100729PubMed |
Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2014). ‘The Action Plan for Australian Mammals 2012.’ (CSIRO Publishing: Melbourne.)
Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences of the United States of America 112, 4531–4540.
| Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar |
Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 11, 367–372.
| Among-site rate variation and its impact on phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |
Zachos, F. E., Apollonio, M., Bärmann, E. V., Festa-Bianchet, M., Göhlich, U., Habel, J. C., Haringa, E., Kruckenhauser, L., Lovari, S., McDevitt, A. D., Pertoldi, C., Rössner, G. E., Sánchez-Villagra, M. R., Scandura, M., and Suchentrunk, F. (2013). Species inflation and taxonomic artefacts – a critical comment on recent trends in mammalian classification. Mammalian Biology 78, 1–6.
| Species inflation and taxonomic artefacts – a critical comment on recent trends in mammalian classification.Crossref | GoogleScholarGoogle Scholar |
Zenger, K. R., Eldridge, M. D. B., and Johnston, P. G. (2005). Phylogenetics, population structure and genetic diversity of the endangered southern brown bandicoot (Isoodon obesulus) in south-eastern Australia. Conservation Genetics 6, 193–204.
| Phylogenetics, population structure and genetic diversity of the endangered southern brown bandicoot (Isoodon obesulus) in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |