Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Resolving distribution and population fragmentation in two leaf-tailed gecko species of north-east Australia: key steps in the conservation of microendemic species

Lorenzo V. Bertola https://orcid.org/0000-0002-1927-308X A , Megan Higgie A and Conrad J. Hoskin https://orcid.org/0000-0001-8116-6085 A B
+ Author Affiliations
- Author Affiliations

A College of Science and Engineering, James Cook University, Townsville, Qld 4811, Australia.

B Corresponding author. Email: conrad.hoskin@jcu.edu.au

Australian Journal of Zoology 66(2) 152-166 https://doi.org/10.1071/ZO18036
Submitted: 21 May 2018  Accepted: 4 October 2018   Published: 2 November 2018

Abstract

North Queensland harbours many microendemic species. These species are of conservation concern due to their small and fragmented populations, coupled with threats such as fire and climate change. We aimed to resolve the distribution and population genetic structure in two localised Phyllurus leaf-tailed geckos: P. gulbaru and P. amnicola. We conducted field surveys to better resolve distributions, used Species Distribution Models (SDMs) to assess the potential distribution, and then used the SDMs to target further surveys. We also sequenced all populations for a mitochondrial gene to assess population genetic structure. Our surveys found additional small, isolated populations of both species, including significant range extensions. SDMs revealed the climatic and non-climatic variables that best predict the distribution of these species. Targeted surveys based on the SDMs found P. gulbaru at an additional two sites but failed to find either species at other sites, suggesting that we have broadly resolved their distributions. Genetic analysis revealed population genetic structuring in both species, including deeply divergent mitochondrial lineages. Current and potential threats are overlain on these results to determine conservation listings and identify management actions. More broadly, this study highlights how targeted surveys, SDMs, and genetic data can rapidly increase our knowledge of microendemic species, and direct management.


References

Aho, K., Derryberry, D., and Peterson, T. (2014). Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636.
Model selection for ecologists: the worldviews of AIC and BIC.Crossref | GoogleScholarGoogle Scholar |

Anderson, R. P., and Gonzalez, I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecological Modelling 222, 2796–2811.
Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent.Crossref | GoogleScholarGoogle Scholar |

Auliya, M., Altherr, S., Ariano-Sanchez, D., Baard, E. H., Brown, C., Brown, R. M., Cantu, J., Gentile, G., Gildenhuys, P., Henningheim, E., Hintzmann, J., Kanari, K., Krvavac, M., Lettink, M., Lippert, J., Luiselli, L., Nilson, G., Nguyen, T. Q., Nijman, V., Parham, J. F., Pasachnik, S. A., Pedrono, M., Rauhaus, A., Cordova, D. R., Sanchez, M., Schepp, U., van Schingen, M., Schneeweiss, N., Segniagbeto, G. H., Somaweera, R., Sy, E. Y., Turkozan, O., Vinke, S., Vinke, T., Vyas, R., Williamson, S., and Ziegler, T. (2016). Trade in live reptiles, its impact on wild populations, and the role of the European market. Biological Conservation 204, 103–119.
Trade in live reptiles, its impact on wild populations, and the role of the European market.Crossref | GoogleScholarGoogle Scholar |

Barnett, L. K., Phillips, B. L., and Hoskin, C. J. (2017). Going feral: time and propagule pressure determine range expansion of Asian house geckos into natural environments. Austral Ecology 42, 165–175.
Going feral: time and propagule pressure determine range expansion of Asian house geckos into natural environments.Crossref | GoogleScholarGoogle Scholar |

Bateman, B. L., VanDerWal, J., Williams, S. E., and Johnson, C. N. (2012). Biotic interactions influence the projected distribution of a specialist mammal under climate change. Diversity & Distributions 18, 861–872.
Biotic interactions influence the projected distribution of a specialist mammal under climate change.Crossref | GoogleScholarGoogle Scholar |

Bell, R. C., Parra, J. L., Tonione, M., Hoskin, C. J., Mackenzie, J. B., Williams, S. E., and Moritz, C. (2010). Patterns of persistence and isolation indicate resilience to climate change in montane rainforest lizards. Molecular Ecology 19, 2531–2544.

Borsboom, A. C., Couper, P. J., Amey, A., and Hoskin, C. J. (2010). Distribution and population genetic structure of the critically endangered skink Nangura spinosa, and the implications for management. Australian Journal of Zoology 58, 369–375.
Distribution and population genetic structure of the critically endangered skink Nangura spinosa, and the implications for management.Crossref | GoogleScholarGoogle Scholar |

Bourg, N. A., McShea, W. J., and Gill, D. E. (2005). Putting a CART before the search: successful habitat prediction for a rare forest herb. Ecology 86, 2793–2804.
Putting a CART before the search: successful habitat prediction for a rare forest herb.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2004). Multimodel inference understanding AIC and BIC in model selection. Sociological Methods & Research 33, 261–304.
Multimodel inference understanding AIC and BIC in model selection.Crossref | GoogleScholarGoogle Scholar |

Couper, P., and Hoskin, C. (2008). Litho-refugia: the importance of rock landscapes for the long-term persistence of Australian rainforest fauna. Australian Zoologist 34, 554–560.
Litho-refugia: the importance of rock landscapes for the long-term persistence of Australian rainforest fauna.Crossref | GoogleScholarGoogle Scholar |

Couper, P., and Hoskin, C. J. (2013). Two new subspecies of the leaf-tailed gecko Phyllurus ossa (Lacertilia: Carphodactylidae) from mid-eastern Queensland, Australia. Zootaxa 3664, 537–553.
Two new subspecies of the leaf-tailed gecko Phyllurus ossa (Lacertilia: Carphodactylidae) from mid-eastern Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Couper, P. J., Schneider, C. J., Hoskin, C. J., and Covacevich, J. A. (2000). Australian leaf-tailed geckos: phylogeny, a new genus, two new species and other new data. Memoirs of the Queensland Museum 45, 253–266.

Crandall, K. A., Bininda-Emonds, O. R., Mace, G. M., and Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15, 290–295.

Cunningham, H. R., Rissler, L. J., Buckley, L. B., and Urban, M. C. (2016). Abiotic and biotic constraints across reptile and amphibian ranges. Ecography 39, 1–8.
Abiotic and biotic constraints across reptile and amphibian ranges.Crossref | GoogleScholarGoogle Scholar |

Curtis, L. K. (Ed.) (2012). ‘Queensland’s Threatened Animals.’ (CSIRO Publishing: Melbourne.)

ESRI (2012). ‘ArcGIS 10.1.’ (ESRI: Redlands, CA.)

Fordham, D. A., Brook, B. W., Hoskin, C. J., Pressey, R. L., VanDerWal, J., and Williams, S. E. (2016). Extinction debt from climate change for frogs in the wet tropics. Biology Letters 12, 20160236.
Extinction debt from climate change for frogs in the wet tropics.Crossref | GoogleScholarGoogle Scholar |

Gagnaire, P. A., Broquet, T., Aurelle, D., Viard, F., Souissi, A., Bonhomme, F., Arnaud-Haondm, S., and Bierne, N. (2015). Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evolutionary Applications 8, 769–786.
Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era.Crossref | GoogleScholarGoogle Scholar |

Galante, P. J., Alade, B., Muscarella, R., Jansa, S. A., Goodman, S. M., and Anderson, R. P. (2018). The challenge of modeling niches and distributions for data‐poor species: a comprehensive approach to model complexity. Ecography 41, 726–736.
The challenge of modeling niches and distributions for data‐poor species: a comprehensive approach to model complexity.Crossref | GoogleScholarGoogle Scholar |

Gilpin, M. E., and Soule, M. E. (1986). Minimum viable populations: processes of species extinction. In ‘Conservation Biology: the Science of Scarcity and Diversity’. (Ed. M. E. Soule.) pp. 19–34. (Sinauer Associates: Sunderland, MA.)

Graham, C. H., VanDerWal, J., Phillips, S. J., Moritz, C., and Williams, S. E. (2010). Dynamic refugia and species persistence: tracking spatial shifts in habitat through time. Ecography 33, 1062–1069.
Dynamic refugia and species persistence: tracking spatial shifts in habitat through time.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Rix, M. G., Framenau, V. W., Hamilton, Z. R., Johnson, M. S., Teale, R. J., Humphreys, G., and Humphreys, W. F. (2011). Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes. Invertebrate Systematics 25, 1–10.
Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes.Crossref | GoogleScholarGoogle Scholar |

Hernandez, P. A., Graham, C. H., Master, L. L., and Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29, 773–785.
The effect of sample size and species characteristics on performance of different species distribution modelling methods.Crossref | GoogleScholarGoogle Scholar |

Hijmans, R. J., van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., Lamigueiro, O. P., Bevan, A., Racine, E. B., Shortridge, A. (2015). ‘Raster’. R package version 2.6-7.

Hoskin, C. J. (2004). Australian microhylid frogs (Cophixalus and Austrochaperina): phylogeny, taxonomy, calls, distributions and breeding biology. Australian Journal of Zoology 52, 237–269.
Australian microhylid frogs (Cophixalus and Austrochaperina): phylogeny, taxonomy, calls, distributions and breeding biology.Crossref | GoogleScholarGoogle Scholar |

Hoskin, C. J. (2011). The invasion and potential impact of the Asian house gecko (Hemidactylus frenatus) in Australia. Austral Ecology 36, 240–251.
The invasion and potential impact of the Asian house gecko (Hemidactylus frenatus) in Australia.Crossref | GoogleScholarGoogle Scholar |

Hoskin, C. J. (2014). A new skink (Scincidae: Carlia) from the rainforest uplands of Cape Melville, north-east Australia. Zootaxa 3869, 224–236.
A new skink (Scincidae: Carlia) from the rainforest uplands of Cape Melville, north-east Australia.Crossref | GoogleScholarGoogle Scholar |

Hoskin, C. J., and Couper, P. J. (2013). A spectacular new leaf-tailed gecko (Carphodactylidae: Saltuarius) from the Melville Range, north-east Australia. Zootaxa 3717, 543–558.
A spectacular new leaf-tailed gecko (Carphodactylidae: Saltuarius) from the Melville Range, north-east Australia.Crossref | GoogleScholarGoogle Scholar |

Hoskin, C. J., and Couper, P. J. (2014). Two new skinks (Scincidae: Glaphyromorphus) from rainforest habitats in north-eastern Australia. Zootaxa 3869, 1–16.
Two new skinks (Scincidae: Glaphyromorphus) from rainforest habitats in north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Hoskin, C. J., Couper, P. J., and Schneider, C. J. (2003). A new species of Phyllurus (Lacertilia: Gekkonidae) and a revised phylogeny and key for the Australian leaf-tailed geckos. Australian Journal of Zoology 51, 153–164.
A new species of Phyllurus (Lacertilia: Gekkonidae) and a revised phylogeny and key for the Australian leaf-tailed geckos.Crossref | GoogleScholarGoogle Scholar |

Hoskin, C. J., Tonione, M., Higgie, M., MacKenzie, J. B., Williams, S. E., VanDerWal, J., and Moritz, C. (2011). Persistence in peripheral refugia promotes phenotypic divergence and speciation in a rainforest frog. American Naturalist 178, 561–578.
Persistence in peripheral refugia promotes phenotypic divergence and speciation in a rainforest frog.Crossref | GoogleScholarGoogle Scholar |

Hugall, A., Moritz, C., Moussalli, A., and Stanisic, J. (2002). Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proceedings of the National Academy of Sciences of the United States of America 99, 6112–6117.
Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875).Crossref | GoogleScholarGoogle Scholar |

Hutchinson, M., Xu, T., Houlder, D., Nix, H., and McMahon, J. (2009). ANUCLIM 6.0 User’s Guide. Fenner School of Environment and Society, Australian National University, Canberra.

IUCN (2012). ‘IUCN Red List Categories and Criteria: Version 3.1.’ (IUCN: Gland, Switzerland.)

Jiménez‐Valverde, A. (2012). Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Global Ecology and Biogeography 21, 498–507.
Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling.Crossref | GoogleScholarGoogle Scholar |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar |

Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86, 6196–6200.
Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers.Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Laurance, W. F. (1997). A distributional survey and habitat model for the endangered northern bettong Bettongia tropica in tropical Queensland. Biological Conservation 82, 47–60.
A distributional survey and habitat model for the endangered northern bettong Bettongia tropica in tropical Queensland.Crossref | GoogleScholarGoogle Scholar |

Lindenmayer, D., and Scheele, B. (2017). Do not publish. Science 356, 800–801.
Do not publish.Crossref | GoogleScholarGoogle Scholar |

MacArthur, R. H., and Wilson, E. O. (1967). ‘The Theory of Island Biogeography.’ (Princeton University Press: Princeton, NJ.)

Macey, J. R., Larson, A., Ananjeva, N. B., Fang, Z., and Papenfuss, T. J. (1997). Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution 14, 91–104.
Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome.Crossref | GoogleScholarGoogle Scholar |

Mann, M. E., Rahmstorf, S., Kornhuber, K., Steinman, B. A., Miller, S. K., and Coumou, D. (2017). Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Scientific Reports 7, 45242.

Miller, S. A., Dykes, D. D., and Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research 16, 1215.
A simple salting out procedure for extracting DNA from human nucleated cells.Crossref | GoogleScholarGoogle Scholar |

Moritz, C., Patton, J. L., Schneider, C., and Smith, T. B. (2000). Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Systematics 31, 533–563.
Diversification of rainforest faunas: an integrated molecular approach.Crossref | GoogleScholarGoogle Scholar |

Moritz, C., Hoskin, C., Graham, C. H., Hugall, A., Moussalli, A., and Purvis, A. (2005). Historical biogeography, diversity and conservation of Australia’s tropical rainforest herpetofauna. In ‘Phylogeny and Conservation’. (Eds A. Purvis, J. L. Gittleman, and T. Brooks.) pp. 243–264. (Cambridge University Press: New York.)

Moritz, C., Hoskin, C. J., MacKenzie, J. B., Phillips, B. L., Tonione, M., Silva, N., VanDerWal, J., Williams, S. E., and Graham, C. H. (2009). Identification and dynamics of a cryptic suture zone in tropical rainforest. Proceedings of the Royal Society B: Biological Sciences 276, 1235–1244.
Identification and dynamics of a cryptic suture zone in tropical rainforest.Crossref | GoogleScholarGoogle Scholar |

Murray, P., and de Jong, C. (2017). Range extension for the leaf-tailed gecko Phyllurus gulbaru in north Queensland. Memoirs of the Queensland Museum 60, 176.

Muscarella, R., Galante, P. J., Soley‐Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., and Anderson, R. P. (2014). ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5, 1198–1205.
ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models.Crossref | GoogleScholarGoogle Scholar |

Neldner, V. J., Niehus, R. E., Wilson, B. A., McDonald, W. J. F., Ford, A. J., and Accad, A. (2017). The vegetation of Queensland. Descriptions of broad vegetation groups. Version 3.0. Queensland Herbarium, Department of Science, Information Technology and Innovation.

Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R., Moret, B. M., and Stamatakis, A. (2010). How many bootstrap replicates are necessary? Journal of Computational Biology 17, 337–354.
How many bootstrap replicates are necessary?Crossref | GoogleScholarGoogle Scholar |

Peterson, A. T. (2011). ‘Ecological Niches and Geographic Distributions.’ (Princeton University Press: Princeton, NJ.)

Phillips, S. J., and Dudik, M (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175.

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling 190, 231–259.
Maximum entropy modelling of species geographic distributions.Crossref | GoogleScholarGoogle Scholar |

Pope, L. (2000). Population structure of the northern bettong. Ph.D. Thesis, University of Queensland, Brisbane.

R Development Core Team (2013). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org.

Radosavljevic, A., and Anderson, R. P. (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41, 629–643.
Making better Maxent models of species distributions: complexity, overfitting and evaluation.Crossref | GoogleScholarGoogle Scholar |

Raxworthy, C. J., Martinez-Meyer, E., Horning, N., Nussbaum, R. A., Schneider, G. E., Ortega-Huerta, M. A., and Peterson, A. T. (2003). Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837–841.
Predicting distributions of known and unknown reptile species in Madagascar.Crossref | GoogleScholarGoogle Scholar |

Read, K., Keogh, J. S., Scott, I. A., Roberts, J. D., and Doughty, P. (2001). Molecular phylogeny of the Australian frog genera Crinia, Geocrinia, and allied taxa (Anura: Myobatrachidae). Molecular Phylogenetics and Evolution 21, 294–308.
Molecular phylogeny of the Australian frog genera Crinia, Geocrinia, and allied taxa (Anura: Myobatrachidae).Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |

Rosauer, D. F., Catullo, R. A., VanDerWal, J, Moussalli, A, Hoskin, C. J., and Moritz, C (2017). Correction: lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna. PLoS One 12, e0169726.

Russell-Smith, J., and Stanton, P. (2002). Fire regimes and fire management of rainforest communities across northern Australia. In ‘Flammable Australia: the Fire Regimes and Biodiversity of a Continent’. (Eds R. A. Bradstock, J. Williams, and A. M. Gill.) pp. 329–350. (Cambridge University Press: Cambridge.)

Shcheglovitova, M., and Anderson, R. P. (2013). Estimating optimal complexity for ecological niche models: a jack-knife approach for species with small sample sizes. Ecological Modelling 269, 9–17.
Estimating optimal complexity for ecological niche models: a jack-knife approach for species with small sample sizes.Crossref | GoogleScholarGoogle Scholar |

Singhal, S., Hoskin, C. J., Couper, P., Potter, S., and Moritz, C. (2018). A framework for resolving cryptic species: a case study from the lizards of the Australian Wet Tropics. Systematic Biology , .
A framework for resolving cryptic species: a case study from the lizards of the Australian Wet Tropics.Crossref | GoogleScholarGoogle Scholar |

Sistrom, M. J., Hutchinson, M. N., Hutchinson, R. G., and Donnellan, S. C. (2009). Molecular phylogeny of Australian Gehyra (Squamata: Gekkonidae) and taxonomic revision of Gehyra variegata in south-eastern Australia. Zootaxa 2277, 14–32.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar |

Storlie, C. J., Phillips, B. L., VanDerWal, J. J., and Williams, S. E. (2013). Improved spatial estimates of climate predict patchier species distributions. Diversity & Distributions 19, 1106–1113.
Improved spatial estimates of climate predict patchier species distributions.Crossref | GoogleScholarGoogle Scholar |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar |

Terborgh, J., and Winter, B. (1980). Some causes of extinction. In ‘Conservation Biology: an Evolutionary–Ecological Perspective’. (Eds M. E. Soulé, and B. A. Wilcox.) pp. 119–133. (Sinauer Associates: Sunderland, MA.)

Thompson, J. D., Gibson, T., and Higgins, D. G. (2002). Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics 00, 2–3.

van Gils, H., Westinga, E., Carafa, M., Antonucci, A., and Ciaschetti, G. (2014). Where the bears roam in Majella National Park, Italy. Journal for Nature Conservation 22, 23–34.
Where the bears roam in Majella National Park, Italy.Crossref | GoogleScholarGoogle Scholar |

VanDerWal, J., Shoo, L. P., Graham, C., and Williams, S. E. (2009a). Selecting pseudo-absence data for presence-only distribution modelling: how far should you stray from what you know? Ecological Modelling 220, 589–594.
Selecting pseudo-absence data for presence-only distribution modelling: how far should you stray from what you know?Crossref | GoogleScholarGoogle Scholar |

VanDerWal, J., Shoo, L. P., and Williams, S. E. (2009b). New approaches to understanding late Quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forests. Journal of Biogeography 36, 291–301.
New approaches to understanding late Quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forests.Crossref | GoogleScholarGoogle Scholar |

Vernes, K., and Pope, L. C. (2006). Capture success and population density of the northern bettong Bettongia tropica in northeastern Queensland. Australian Mammalogy 28, 87–92.
Capture success and population density of the northern bettong Bettongia tropica in northeastern Queensland.Crossref | GoogleScholarGoogle Scholar |

Warren, D. L., and Seifert, S. N. (2011). Ecological niche modelling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21, 335–342.
Ecological niche modelling in Maxent: the importance of model complexity and the performance of model selection criteria.Crossref | GoogleScholarGoogle Scholar |

Williams, S. E., Bolitho, E. E., and Fox, S. (2003). Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proceedings. Biological Sciences 270, 1887–1892.
Climate change in Australian tropical rainforests: an impending environmental catastrophe.Crossref | GoogleScholarGoogle Scholar |

Wilson, S., and Swan, G. (2013). ‘Complete Guide to Reptiles of Australia.’ 4th edn. (New Holland Publishers: Sydney.)