Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Phylogeny and biogeography of species of Syphacia Seurat, 1916 (Nemata : Oxyurida : Oxyuridae) from the Australian Bioregion

Haylee J. Weaver A B E , Scott Monks C and Scott L. Gardner D
+ Author Affiliations
- Author Affiliations

A School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Qld 4556, Australia.

B Present address: Australian Biological Resources Study, Department of the Environment, GPO Box 787, Canberra, ACT 2601, Australia.

C Universidad Autónoma del Estado de Hidalgo (UAEH), Centro de Investigaciones Biológicas (CIB), Apdo. Postal 1-10, Pachuca, C.P. 42001, Hidalgo, México.

D Manter Laboratory of Parasitology, University of Nebraska State Museum and School of Biological Sciences, University of Nebraska – Lincoln, Lincoln, NE 68588-0514, USA.

E Corresponding author. Email: haylee.weaver@environment.gov.au

Australian Journal of Zoology 64(2) 81-90 https://doi.org/10.1071/ZO15080
Submitted: 2 December 2015  Accepted: 10 May 2016   Published: 17 June 2016

Abstract

Pinworm nematodes of the genus Syphacia (Nemata : Oxyurida : Oxyuridae) have a global distribution, and infect the caecum of rodents. Within the Australian Bioregion, 17 species of Syphacia infect a range of rodent hosts. Pinworms are traditionally thought to have coevolutionary relationships with their hosts, but the evolution and dispersal of Australian rodents and their helminths remains unclear. This combination of factors allowed us to investigate the likely relationships of Australian Syphacia species based on phylogenetic analysis, overlaid with the ecology and relationships of host species. We conducted a phylogenetic analysis using morphological characters of the species of Syphacia from the Australian Bioregion in order to examine the relationships between species, and to investigate how host evolution and phylogeny could inform (or be informed) by parasite phylogeny. Application of the taxon pulse theory of parasite speciation by matching host species to parasites shed some light on the timing of speciation of rodent hosts. We found that species of Syphacia had reasonably close host–parasite relationships, with additional evidence for ecological fitting or host switching occurring. Evidence provided here suggests strongly that most elements of the Stockholm Paradigm are at play in structuring the relationships we observe in this pinworm–mammal system.


References

Adamson, M. (1994). Evolutionary patterns in life histories of Oxyurida. International Journal for Parasitology 24, 1167–1177.
Evolutionary patterns in life histories of Oxyurida.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3kslelsg%3D%3D&md5=507ae81cbb3361d15dc5b5b39b75fe64CAS | 7729975PubMed |

Anderson, R. (2000). ‘Nematode Parasites of Vertebrates: their Development and Transmission.’ (CAB International: Oxford.)

Archie, J. W. (1985). Methods for coding variable morphological features for numerical taxonomic analysis. Systematic Biology 34, 326–345.
Methods for coding variable morphological features for numerical taxonomic analysis.Crossref | GoogleScholarGoogle Scholar |

Brooks, D., and McLennan, D. (2002). ‘The Nature of Diversity: an Evolutionary Voyage of Discovery.’ (Chicago University Press: Chicago.)

Brooks, D., and McLennan, D. (2003). Extending phylogenetic studies of coevolution: secondary Brooks parsimony analysis, parasites and the Great Apes. Cladistics 19, 104–119.
Extending phylogenetic studies of coevolution: secondary Brooks parsimony analysis, parasites and the Great Apes.Crossref | GoogleScholarGoogle Scholar |

Brooks, D., Leon-Regagnon, V., McLennan, D., and Zelmer, D. (2006). Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology 87, S76–S85.
Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans.Crossref | GoogleScholarGoogle Scholar | 16922304PubMed |

Brooks, D., Bilewitch, J., Charmaine, C., Evans, D., Folinsbee, K., Frobisch, J., Halas, D., Hill, S., McLennan, D., Mattern, M., Tsuji, L., Ward, J., Wahlberg, D., and Zanatta, D. (2007). Quantitative phylogenetic analysis in the 21st century. Revista Mexicana de Biodiversidad 78, 225–252.

Brooks, D. R., Hoberg, E. P., Boeger, W. A., Gardner, S. L., Galbreath, K. E., Herczeg, D., Mejía-Madrid, H. H., Rácz, E., and Dursahinhan, A. T. (2014). Finding them before they find us: informatics, parasites and environments in accelerating climate change. Comparative Parasitology 81, 155–164.
Finding them before they find us: informatics, parasites and environments in accelerating climate change.Crossref | GoogleScholarGoogle Scholar |

Brooks, D. R., Hoberg, E. P., and Boeger, W. A. (2015). In the eye of the cyclops: the classic case of cospeciation and why paradigms are important. Comparative Parasitology 82, 1–8.
In the eye of the cyclops: the classic case of cospeciation and why paradigms are important.Crossref | GoogleScholarGoogle Scholar |

Bryant, L., Donnellan, S., Hurwood, D., and Fuller, S. (2011). Phylogenetic relationships and divergence data estimates among Australo-Papuan mosaic-tailed rats from the Uromys division (Rodentia: Muridae). Zoologica Scripta 40, 433–447.
Phylogenetic relationships and divergence data estimates among Australo-Papuan mosaic-tailed rats from the Uromys division (Rodentia: Muridae).Crossref | GoogleScholarGoogle Scholar |

Cameron, T. (1929). The species of Enterobius Leach in primates. Journal of Helminthology 7, 161–182.
The species of Enterobius Leach in primates.Crossref | GoogleScholarGoogle Scholar |

Cox, B. (2001). The biogeographic regions reconsidered. Journal of Biogeography 28, 511–523.
The biogeographic regions reconsidered.Crossref | GoogleScholarGoogle Scholar |

Dewi, K., and Hasegawa, H. (2010). A new Syphacia species (Nematoda: Oxyuridae) collected from Bunomys spp. (Rodentia: Muridae) in central Sulwesi, Indonesia. The Journal of Parasitology 96, 125–128.
A new Syphacia species (Nematoda: Oxyuridae) collected from Bunomys spp. (Rodentia: Muridae) in central Sulwesi, Indonesia.Crossref | GoogleScholarGoogle Scholar | 19685937PubMed |

Dewi, K., and Hasegawa, H. (2014). Two new species of Syphacia (Nematoda: Oxyuridae) in endemic murid rodents from Sulawesi, Indonesia. Journal of Helminthology 88, 41–49.
Two new species of Syphacia (Nematoda: Oxyuridae) in endemic murid rodents from Sulawesi, Indonesia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s%2FptlyqtQ%3D%3D&md5=74285878cd87b5ab61d9f93aa0a0e106CAS | 23110941PubMed |

Dewi, K., Asakawa, M., and Fitriana, Y. S. (2014). Syphacia (Syphacia) semiadii n. sp. (Nematoda: Oxyuridae) from Halmaheramys bokimekot Fabre et al., 2013 (Rodentia: Muridae) on Halmahera Island, Indonesia. Transactions of the Royal Society of South Australia 138, 98–104.
Syphacia (Syphacia) semiadii n. sp. (Nematoda: Oxyuridae) from Halmaheramys bokimekot Fabre et al., 2013 (Rodentia: Muridae) on Halmahera Island, Indonesia.Crossref | GoogleScholarGoogle Scholar |

Dewi, K., Hasegawa, H., Fitriana, Y. S., and Asakawa, M. (2015). Syphacia (Syphacia) maxomyos sp. n. (Nematoda: Oxyuridae) from Maxomys spp. (Rodentia: Muridae) from Sulawesi and Sumatra, Indonesia. The Journal of Veterinary Medical Science 77, 1217–1222.
Syphacia (Syphacia) maxomyos sp. n. (Nematoda: Oxyuridae) from Maxomys spp. (Rodentia: Muridae) from Sulawesi and Sumatra, Indonesia.Crossref | GoogleScholarGoogle Scholar | 26062434PubMed |

Dress, A., Huber, K. T., and Moulton, V. (2007). Some uses of the Farris Transform in mathematics and phylogenetics – a review. Annals of Combinatorics 11, 1–37.
Some uses of the Farris Transform in mathematics and phylogenetics – a review.Crossref | GoogleScholarGoogle Scholar |

Erwin, T. (1985). The taxon pulse: a general pattern of lineage radiation and extinction among carabid beetles. In ‘Taxonomy, Phylogeny and Biogeography of Beetles and Ants’. (Ed. G. Ball.) pp. 437–472. (W. Junk: Dordrecht.)

Fabre, P.-H., Pages, M., Musser, G., Fitriana, Y., Fjeldsa, J., Jennings, A., Jonsson, K., Kennedy, J., Michaux, J., Semiadi, G., Supriatna, N., and Helgen, K. (2013). A new genus of rodent from Wallacea (Rodentia: Muridae: Murinae: Rattini), and its implication for biogeography and Indo-Pacific Rattini systematics. Zoological Journal of the Linnean Society 169, 408–447.
A new genus of rodent from Wallacea (Rodentia: Muridae: Murinae: Rattini), and its implication for biogeography and Indo-Pacific Rattini systematics.Crossref | GoogleScholarGoogle Scholar |

Farris, J. (1970). Methods for computing Wagner trees. Systematic Zoology 19, 83–92.
Methods for computing Wagner trees.Crossref | GoogleScholarGoogle Scholar |

Farris, J. (1972). Estimating phylogenetic trees from distance matrices. American Naturalist 106, 645–668.
Estimating phylogenetic trees from distance matrices.Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (1982). Numerical methods for inferring evolutionary trees. The Quarterly Review of Biology 57, 379–404.
Numerical methods for inferring evolutionary trees.Crossref | GoogleScholarGoogle Scholar |

Flannery, T. (1995). ‘The Mammals of New Guinea.’ (Reed Books: Sydney.)

Gardner, S. L. (1991). Phyletic coevolution between subterranean rodents of the genus Ctenomys (Rodentia: Hystricognathi) and nematodes of the genus Paraspidodera (Heterakoidea: Aspidoderidae) in the Neotropics: temporal and evolutionary implications. Zoological Journal of the Linnean Society 102, 169–201.
Phyletic coevolution between subterranean rodents of the genus Ctenomys (Rodentia: Hystricognathi) and nematodes of the genus Paraspidodera (Heterakoidea: Aspidoderidae) in the Neotropics: temporal and evolutionary implications.Crossref | GoogleScholarGoogle Scholar |

Geffen, E., Rowe, K., and Yom-Tov, Y. (2011). Reproductive rates in Australian rodents are related to phylogeny. PLoS One 6, e19199.
Reproductive rates in Australian rodents are related to phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlslGmtrc%3D&md5=57d35243d9e5e5c204bebce82ac10a67CAS | 21559433PubMed |

Goloboff, P., Mattoni, C., and Quinteros, Y. (2006). Continuous characters analyzed as such. Cladistics 22, 589–601.
Continuous characters analyzed as such.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Halas, D., Zamparo, D., and Brooks, D. (2005). A historical biogeographical protocol for studying biotic diversification by taxon pulses. Journal of Biogeography 32, 249–260.
A historical biogeographical protocol for studying biotic diversification by taxon pulses.Crossref | GoogleScholarGoogle Scholar |

Hasegawa, H., and Tarore, D. (1996). Syphacia (Syphacia) sulawesiensis n. sp. and S. (S.) muris (Yamaguti 1935) (Nematoda: Oxyuridae) collected from Rattus xanthurus (Gray 1867) (Rodentia: Muridae) in north Sulawesi, Indonesia. Tropical Zoology 9, 165–173.
Syphacia (Syphacia) sulawesiensis n. sp. and S. (S.) muris (Yamaguti 1935) (Nematoda: Oxyuridae) collected from Rattus xanthurus (Gray 1867) (Rodentia: Muridae) in north Sulawesi, Indonesia.Crossref | GoogleScholarGoogle Scholar |

Hennig, W. (1966). ‘Phylogenetic Systematics.’ (University of Illinois Press: Urbana, IL.)

Hoberg, E., and Brooks, D. (2010). Beyond vicariance: integrating taxon pulses, ecological fitting and oscillation in evolution and historical biogeography. In ‘The Biogeography of Host–Parasite Interactions’. (Eds S. Morand and B. Krasnov.) pp. 7–15. (Oxford University Press: Oxford.)

Hoberg, E. P., and Brooks, D. R. (2015). Evolution in action: climate change, biodiversity, dynamics and emerging infectious diseases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 370, 20130553.
Evolution in action: climate change, biodiversity, dynamics and emerging infectious diseases.Crossref | GoogleScholarGoogle Scholar | 25688014PubMed |

Holt, B., Lessard, J.-P., Borregaard, M., Fritz, S., Araujo, M., Dimitrov, D., Fabre, P.-H., Graham, C., Graves, G., Jonsson, K., Nogues-Bravo, D., Wang, Z., Whittaker, R., Fjeldsa, J., and Rahbek, C. (2013). An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78.
An update of Wallace’s zoogeographic regions of the world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnt1Ol&md5=44694b96aaa190a35aa574c4eab7f7b0CAS | 23258408PubMed |

Hugot, J.-P. (1988). Les nematodes Syphaciinae parasites de rongeurs et de lagomorphes: taxonomie, zoogeographie, evolution. Memoires du Museum National d’Histoire Naturelle 141, 1–148.

Hugot, J.-P. (1990). The Syphaciinae (Oxyuridae, Nematoda) parasitic in rodents and lagomorphs. Numerical taxonomy, cladistic analysis of evolution. Annales de Parasitologie Humaine et Comparee 65, 27–29.
| 2264677PubMed |

Hugot, J.-P. (1999). Primates and their pinworm parasites: the Cameron hypothesis revisited. Systematic Biology 48, 523–546.
Primates and their pinworm parasites: the Cameron hypothesis revisited.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zitleksQ%3D%3D&md5=55483fa25210162de6de819057ca744bCAS | 12066292PubMed |

Hugot, J.-P., and Quentin, J.-C. (1985). Étude morphologique de six espèces nouvelles ou peu connues appartenant au genre Syphacia (Oxyuridae, Nematoda), parasites de Rongeurs Cricétidés et Muridés. Bulletin du Muséum National d’Histoire Naturelle 4, 383–400.

Hugot, J.-P., Gardner, S., and Morand, S. (1996). The Enterobiinae subfam. nov. (Nematoda: Oxyuridae) pinworm parasites of primates and rodents. International Journal for Parasitology 26, 147–159.
The Enterobiinae subfam. nov. (Nematoda: Oxyuridae) pinworm parasites of primates and rodents.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK283jtFSnug%3D%3D&md5=0763023ed2c152dbd78fa3aaad69bde9CAS | 8690538PubMed |

Hugot, J.-P., Feliu, C., Douangboupha, B., and Ribas, A. (2013). Laoxyuris laonasti n. gen., n. sp. (Nematoda: Syphaciinae) parasite of Laonastes aenigmamus (Rodentia: Diatomyidae): morphology, biology, taxonomy, phylogeny. Infection, Genetics and Evolution 16, 113–121.
Laoxyuris laonasti n. gen., n. sp. (Nematoda: Syphaciinae) parasite of Laonastes aenigmamus (Rodentia: Diatomyidae): morphology, biology, taxonomy, phylogeny.Crossref | GoogleScholarGoogle Scholar | 23357582PubMed |

Hull, D. L. (1988). ‘Science as a Process: an Evolutionary Account of the Social and Conceptual Development of Science.’ (University of Chicago Press: Chicago.)

Janz, N., and Nylin, S. (2008). The oscillation hypothesis of host plant-range and speciation. In ‘Specialization, Speciation and Radiation: the Evolutionary Biology of Herbivorous Insects’. (Ed. K. J. Tilmon.) pp. 203–215. (University of California Press: Berkeley.)

Janzen, D. (1985). On ecological fitting. Oikos 45, 308–310.
On ecological fitting.Crossref | GoogleScholarGoogle Scholar |

Lecompte, E., Aplin, K., Denys, C., Catzeflis, F., Chades, M., and Chevret, P. (2008). Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evolutionary Biology 8, 199.
Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily.Crossref | GoogleScholarGoogle Scholar | 18616808PubMed |

Long, J., Archer, M., Flannery, T., and Hand, S. (2002). ‘Prehistoric Mammals of Australia and New Guinea: One Hundred Million Years of Evolution.’ (Johns Hopkins University Press: Baltimore, MD.)

Monks, S. (2001). Phylogeny of the Acanthocephala based on morphological characters. Systematic Parasitology 48, 81–115.
Phylogeny of the Acanthocephala based on morphological characters.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3isFOnsw%3D%3D&md5=18e458b6dcc18d95d0e4572ad1839f58CAS | 11252279PubMed |

Nilsson, M., Harlid, A., Kullberg, M., and Janke, A. (2010). The impact of fossil calibrations, codon positions and relaxed clocks on the divergence time estimates of the native Australian rodents (Conilurini). Gene 455, 22–31.
The impact of fossil calibrations, codon positions and relaxed clocks on the divergence time estimates of the native Australian rodents (Conilurini).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjsF2hs74%3D&md5=bb2015ccddf713553a9f7e2909921535CAS | 20153409PubMed |

Okamoto, M., Urushima, H., Iwasa, M., and Hasegawa, H. (2007). Phylogenetic relationships of rodent pinworms (genus Syphacia) in Japan inferred from mitochondrial CO1 gene sequences. The Journal of Veterinary Medical Science 69, 545–547.
Phylogenetic relationships of rodent pinworms (genus Syphacia) in Japan inferred from mitochondrial CO1 gene sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVOhurg%3D&md5=adb7055d2cd9b91bd7c883a0c601ee03CAS | 17551231PubMed |

Okamoto, M., Urushima, H., and Hasegawa, H. (2009). Phylogenetic relationships of rodent pinworms (genus Syphacia) in Japan inferred from 28S rDNA sequences. Parasitology International 58, 330–333.
Phylogenetic relationships of rodent pinworms (genus Syphacia) in Japan inferred from 28S rDNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CmtbbI&md5=f646780693bd9eba8448c4e37a8279d4CAS | 19591961PubMed |

Petter, A., and Quentin, J.-C. (1976). ‘CIH Keys to the Nematode Parasites of Vertebrates. No 4. Keys to the Genera of the Oxyuroidea.’ (CAB: London.)

Quentin, J.-C. (1971). Morphologie comparée des structures céphaliques et génitales des oxyures de genre Syphacia. Annals Parasitologie Humaine et Comparée 46, 15–60.
| 1:STN:280:DyaE3M3msFSgtg%3D%3D&md5=2c43d4819f05df8ac139ae3567f70209CAS |

Rivas, L. (1964). A reinterpretation of the concepts ‘sympatric’ and ‘allopatric’ with proposal of the additional terms ‘syntopic’ and ‘allotopic’. Systematic Zoology 13, 42–43.
A reinterpretation of the concepts ‘sympatric’ and ‘allopatric’ with proposal of the additional terms ‘syntopic’ and ‘allotopic’.Crossref | GoogleScholarGoogle Scholar |

Robins, J., McLenachen, P., Phillips, M., McComish, B., Matisoo-Smith, E., and Ross, H. (2010). Evolutionary relationships and divergence times among the native rats of Australia. BMC Evolutionary Biology 10, 375.
| 1:CAS:528:DC%2BC3cXhsFGqur3E&md5=8dd0bf40d15ec08d3607c2513e189025CAS | 21126350PubMed |

Rowe, K., Reno, M., Richmond, D., Adkins, R., and Steppan, S. (2008). Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae). Molecular Phylogenetics and Evolution 47, 84–101.
Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXktV2jtLo%3D&md5=c11136546656e029c859e827f3ac4144CAS | 18313945PubMed |

Rowe, K., Aplin, K., Baverstock, P., and Moritz, C. (2011). Recent and rapid speciation with limited morphological disparity in the genus Rattus. Systematic Biology 60, 188–203.
Recent and rapid speciation with limited morphological disparity in the genus Rattus.Crossref | GoogleScholarGoogle Scholar | 21239388PubMed |

Sclater, P. L. (1858). On the general geographical distribution of the members of the class Aves. Journal of the Proceedings of the Linnean Society of London. Zoology 2, 130–136.
On the general geographical distribution of the members of the class Aves.Crossref | GoogleScholarGoogle Scholar |

Smales, L. R. (1992). A survey of the helminths of Rattus sordidus, the canefield rat, together with a description of Ancistronema coronatum n. gen., n. sp. (Nematoda: Chabertiidae). Systematic Parasitology 22, 73–80.
A survey of the helminths of Rattus sordidus, the canefield rat, together with a description of Ancistronema coronatum n. gen., n. sp. (Nematoda: Chabertiidae).Crossref | GoogleScholarGoogle Scholar |

Smales, L. R. (1997). A review of the helminth parasites of Australian rodents. Australian Journal of Zoology 45, 505–521.
A review of the helminth parasites of Australian rodents.Crossref | GoogleScholarGoogle Scholar |

Smales, L. R. (2001). Syphacia longaecauda n. sp. (Nematoda: Oxyuridae) Syphacinea from Melomys spp. (Muridae: Hydromyinae) from Papua New Guinea and Irian Jaya, Indonesia. Parasite 8, 39–43.
Syphacia longaecauda n. sp. (Nematoda: Oxyuridae) Syphacinea from Melomys spp. (Muridae: Hydromyinae) from Papua New Guinea and Irian Jaya, Indonesia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3oslCmug%3D%3D&md5=1ce4f48a56cf55f83a2f7152c7160eb7CAS | 11304949PubMed |

Smales, L. R. (2004). Syphacia (Syphacia) australiasiensis sp. nov. (Nematoda: Oxyuridae) from Rattus leucopus (Muridae) from Papua New Guinea and Australia. Transactions of the Royal Society of South Australia 128, 47–51.

Smales, L. R. (2005). Helminth parasites of the grassland melomys (Muridae: Hydromyinae) from Australia and Papua New Guinea. Australian Journal of Zoology 53, 369–374.
Helminth parasites of the grassland melomys (Muridae: Hydromyinae) from Australia and Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Smales, L. R. (2009). Helminths of Melomys rufescens and Melomys spp. (Muridae: Hydromyinae) from Papua New Guinea with the descriptions of a new genus and five new species in the Heligmonellidae (Nematoda: Trichostrongyloidea). The Raffles Bulletin of Zoology 57, 5–15.

Smales, L. R. (2010). The gastrointestinal helminths of Lorentzimys nouhuysi (Rodentia: Muridae) with descriptions of two new genera and three new species (Nematoda) from Papua New Guinea. The Journal of Parasitology 96, 602–613.
The gastrointestinal helminths of Lorentzimys nouhuysi (Rodentia: Muridae) with descriptions of two new genera and three new species (Nematoda) from Papua New Guinea.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3crhtlSrsg%3D%3D&md5=446974b0c7a6509cf7d702b35967aea7CAS | 20557207PubMed |

Smales, L. R. (2011). Gastrointestinal nematodes of Coccymys ruemmleri (Rodentia, Muridae) with the description of Montistrongylus giluwensis sp. nov. (Heligmonellidae) and Syphacia coccymyos sp. nov. (Oxyuridae) from Papua New Guinea. Acta Parasitologica 56, 418–426.
Gastrointestinal nematodes of Coccymys ruemmleri (Rodentia, Muridae) with the description of Montistrongylus giluwensis sp. nov. (Heligmonellidae) and Syphacia coccymyos sp. nov. (Oxyuridae) from Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Smales, L. R. (2012). Helminth parasites of hydromyine rodents from the island of New Guinea. In ‘Rodents: Habitat, Pathology and Environmental Impact’. (Eds A. Triunveri, and D. Scalise.) pp. 99–117. (Nova Science Publishers: New York.)

Smales, L. R., and Spratt, D. M. (2008). Helminth assemblages of Uromys spp. (Muridae: Hydromyinae) from Australia, Papua New Guinea and Papua Indonesia and comparison with assemblages in Melomys spp. Australian Journal of Zoology 56, 85–94.
Helminth assemblages of Uromys spp. (Muridae: Hydromyinae) from Australia, Papua New Guinea and Papua Indonesia and comparison with assemblages in Melomys spp.Crossref | GoogleScholarGoogle Scholar |

Sokal, R. R., and Rohlf, F. J. (1981). ‘Biometery: the Principles and Practice of Statistics in Biological Research.’ 2nd edn. (W.H. Freeman and Co.)

Sorci, G., Morand, S., and Hugot, J.-P. (1997). Host–parasite coevolution: comparative evidence for covariation of life history traits in primates and oxyurid parasites. Proceedings of the Royal Society B: Biological Science 264, 285–289.
| 1:STN:280:DyaK2s3hsFKhug%3D%3D&md5=0fdbf19a871d1a1c004c796e7de892e5CAS |

Thompson, J. N. (2005). ‘The Geographic Mosaic of Coevolution.’ (University of Chicago Press: Chicago.)

Van Dyck, S., and Strahan, R. (Eds) (2008). ‘Mammals of Australia.’ (Reed New Holland: Sydney.)

van Welzen, P., Turner, H., and Roos, M. (2001). New Guinea: a correlation between accreting areas and dispersing Sapindaceae. Cladistics 17, 242–247.
New Guinea: a correlation between accreting areas and dispersing Sapindaceae.Crossref | GoogleScholarGoogle Scholar |

Voris, H. (2000). Maps of Pleistocene sea levels in southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27, 1153–1167.
Maps of Pleistocene sea levels in southeast Asia: shorelines, river systems and time durations.Crossref | GoogleScholarGoogle Scholar |

Wallace, A. (1876). ‘The Geographical Distribution of Animals.’ (Macmillan: London.)

Watrous, L., and Wheeler, Q. (1981). The outgroup comparison method of character analysis. Systematic Biology 30, 1–11.
The outgroup comparison method of character analysis.Crossref | GoogleScholarGoogle Scholar |

Watts, C., and Aslin, H. (1981). ‘The Rodents of Australia.’ (Angus and Robertson: Australia.)

Weaver, H. J., and Smales, L. R. (2006). Syphacia (Syphacia) abertoni n. sp. (Nematoda: Oxyuridae) from Zyzomys argurus (Thomas) (Rodentia: Muridae) from northern Australia. Transactions of the Royal Society of South Australia 131, 206–210.

Weaver, H. J., and Smales, L. R. (2008). New species of Syphacia (Syphacia) Seurat (Nematoda: Oxyuridae) from Pseudomys species (Rodentia: Muridae) from central Australia. Zootaxa 1775, 39–50.
New species of Syphacia (Syphacia) Seurat (Nematoda: Oxyuridae) from Pseudomys species (Rodentia: Muridae) from central Australia.Crossref | GoogleScholarGoogle Scholar |

Weaver, H. J., and Smales, L. R. (2010). Three new species of Syphacia (Syphacia) (Oxyurida: Oxyuridae) from Queensland, Australia and a key to the species present in the Australian Bioregion. Comparative Parasitology 77, 9–19.
Three new species of Syphacia (Syphacia) (Oxyurida: Oxyuridae) from Queensland, Australia and a key to the species present in the Australian Bioregion.Crossref | GoogleScholarGoogle Scholar |

Wojcicki, M., and Brooks, D. (2005). PACT: an efficient and powerful algorithm for generating area cladograms. Journal of Biogeography 32, 755–774.
PACT: an efficient and powerful algorithm for generating area cladograms.Crossref | GoogleScholarGoogle Scholar |

Wu, Y., Wang, X., Liu, X., and Wang, Y. (2003). Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Research 13, 601–616.
Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjt1Sqt7w%3D&md5=d51bf7bc0fd5c9e4ad38dbf14947aecbCAS | 12671001PubMed |

Yamaguti, S. (1935). Studies on the helminth fauna of Japan. Part 13: Mammalian nematodes. Japanese Journal of Zoology 6, 433–457.