Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
REVIEW

New approaches to cataloguing and understanding evolutionary diversity: a perspective from Australian herpetology

Paul Oliver A B , J. Scott Keogh A and Craig Moritz A
+ Author Affiliations
- Author Affiliations

A Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.

B Corresponding author. Email: paul.oliver@anu.edu.au

Australian Journal of Zoology 62(6) 417-430 https://doi.org/10.1071/ZO14091
Submitted: 24 October 2014  Accepted: 14 January 2015   Published: 19 February 2015

Abstract

Species are a fundamental unit for all fields of biology but conceptual and practical limitations have hampered the process of identifying and describing species in many organismal groups. One outcome of these challenges is the accumulation of genetically divergent lineages and morphologically distinctive populations that are ‘known’, but remain of uncertain taxonomic status and evolutionary significance. These lineages are also currently not effectively incorporated into evolutionary studies or conservation planning and management. Here we suggest three ways to address this issue. First, there is a need to develop improved frameworks to systematically capture taxonomically unrecognised lineage diversity. Second, increased utilisation of metadata frameworks will allow better recording and dissemination of biodiversity information. Finally, emerging genomic and analytical techniques will provide powerful new tools to improve our identification and understanding of evolutionary lineages.

Additional keywords: biodiversity, candidate species, conservation, cryptic species, divergent lineage, generalised lineage concept, genomics, species delimitation, taxonomy.


References

Bell, R. C., Parra, J. L., Tonione, M., Hoskin, C., MacKenzie, J. B., Williams, S. E., and Moritz, C. (2010). Patterns of persistence and isolation indicate resilience to climate change in montane rainforest lizards. Molecular Ecology 19, 2531–2544.
| 20497322PubMed |

Bi, K., Vanderpool, D., Singhal, S., Moritz, C., and Good, J. M. (2012). Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics 13, 403.
Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslalsrjJ&md5=9ffbb2dc3909ab25212f653989e3cbc1CAS | 22900609PubMed |

Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., Ingram, K., and Das, I. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22, 148–155.
Cryptic species as a window on diversity and conservation.Crossref | GoogleScholarGoogle Scholar |

Bond, J. E., and Stockman, A. K. (2008). An integrative method for delimiting cohesion species: finding the population–species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Systematic Biology 57, 628–646.
An integrative method for delimiting cohesion species: finding the population–species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVymsr%2FN&md5=ae82c50359c5a6cfe2bb35c4c673a4d7CAS | 18686196PubMed |

Brown, W. M., and Wright, J. W. (1979). Mitochondrial DNA analyses and the origin and relative age of parthenogenetic lizards (genus Cnemidophurus). Science 203, 1247–1249.
Mitochondrial DNA analyses and the origin and relative age of parthenogenetic lizards (genus Cnemidophurus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhs1GhsrY%3D&md5=a967d9968baa26035b57cf63fa7140edCAS | 424751PubMed |

Camargo, A., Morando, M., Avila, L. J., and Sites, J. W. (2012). Species delimitation with ABC and other coalescent-based methods: a test of accuracy with simulations and an empirical example with lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae). Evolution 66, 2834–2849.
Species delimitation with ABC and other coalescent-based methods: a test of accuracy with simulations and an empirical example with lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae).Crossref | GoogleScholarGoogle Scholar | 22946806PubMed |

Carnaval, A. C., Waltari, E., Rodrigues, M. T., Rosauer, D., VanDerWal, J., Damasceno, R., Prates, I., Strangas, M., Spanos, Z., Rivera, D., Pie, M., Firkowski, C. R., Bornschein, M. R., Ribeiro, L. F., and Moritz, C. (2014). Prediction of phylogeographic endemism in an environmentally complex biome. Proceedings of the Royal Society B: Biological Sciences 281, 20141461.
Prediction of phylogeographic endemism in an environmentally complex biome.Crossref | GoogleScholarGoogle Scholar | 25122231PubMed |

Carstens, B. C., Pelletier, T. A., Reid, N. M., and Satler, J. D. (2013). How to fail at species delimitation. Molecular Ecology 22, 4369–4383.
How to fail at species delimitation.Crossref | GoogleScholarGoogle Scholar | 23855767PubMed |

Catullo, R., and Keogh, J. S. (2014). Aridification drove repeated episodes of diversification between Australian biomes: evidence from a multi-locus phylogeny of Australian toadlets (Uperoleia: Myobatrachidae). Molecular Phylogenetics and Evolution 79, 106–117.
Aridification drove repeated episodes of diversification between Australian biomes: evidence from a multi-locus phylogeny of Australian toadlets (Uperoleia: Myobatrachidae).Crossref | GoogleScholarGoogle Scholar | 24971737PubMed |

Chapman, A. D. (2009). ‘Numbers of Living Species in Australia and the World.’ 2nd edn. (Australian Biological Resources Study: Canberra.)

Chapple, D. G. (2003). Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetological Monograph 17, 145–180.
Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards.Crossref | GoogleScholarGoogle Scholar |

Chen, I.-P., Symonds, M. R. E., Melville, J., and Stuart-Fox, D. (2013). Factors shaping the evolution of colour patterns in Australian agamid lizards (Agamidae): a comparative study. Biological Journal of the Linnean Society 109, 101–112.
Factors shaping the evolution of colour patterns in Australian agamid lizards (Agamidae): a comparative study.Crossref | GoogleScholarGoogle Scholar |

Dayrat, B. (2005). Towards integrative taxonomy. Biological Journal of the Linnean Society 85, 407–415.
Towards integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

de Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In ‘Endless Forms: Species and Speciation’. (Eds D. J. Howard and S. H. Berlocher.) pp. 57–75. (Oxford University Press: Oxford.)

de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology 56, 879–886.
Species concepts and species delimitation.Crossref | GoogleScholarGoogle Scholar | 18027281PubMed |

Dobzhansky, T. (1970). ‘Genetics of the Evolutionary Process.’ (Columbia University Press: New York.)

Donnellan, S., Adams, M., Hutchinson, M., and Baverstock, P. R. (1993). The identification of cryptic species in the Australian herpetofauna: a high research priority. In ‘Herpetology in Australia: a Diverse Discipline’. (Eds D. Lunney, and D. Ayres.) pp. 121–126. (Surrey Beatty: Sydney.)

Donnellan, S. C., Hutchinson, M. N., Dempsey, P., and Osborne, W. S. (2002). Systematics of the Egernia whitii species group (Lacertilia: Scincidae) in south-eastern Australia. Australian Journal of Zoology 50, 439–459.
Systematics of the Egernia whitii species group (Lacertilia: Scincidae) in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Doughty, P., and Oliver, P. M. (2013). Systematics of Diplodactylus (Squamata: Diplodactylidae) from south-western Australia: redefinition of D. polyophthalmus and the description of two new species. Records of the Western Australian Museum 28, 44–65.

Doughty, P., Oliver, P. M., and Adams, M. (2008). Systematics of stone geckos in the genus Diplodactylus (Reptilia: Diplodactylidae) from northwestern Australia, with a description of a new species from the Northwest Cape, Western Australia. Records of the Western Australian Museum 24, 247–265.

Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., and Glenn, T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology 61, 717–726.
Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales.Crossref | GoogleScholarGoogle Scholar | 22232343PubMed |

Fouquet, A., Gilles, A., Vences, M., Marty, C., Blanc, M., and Gemmell, N. J. (2007). Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS ONE 2, e1109.
Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses.Crossref | GoogleScholarGoogle Scholar | 17971872PubMed |

Fujita, M. K., McGuire, J. A., Donnellan, S. C., and Moritz, C. M. (2010). Diversification at the arid–monsoonal interface: Australia-wide biogeography of the Bynoe’s gecko (Heteronotia binoei; Gekkonidae). Evolution 64, 2293–2314.
| 1:CAS:528:DC%2BC3cXhtFaltL3M&md5=b53fa0a26849680d69eb7157f3cec66cCAS | 20298463PubMed |

Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A., and Moritz, C. (2012). Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology & Evolution 27, 480–488.
Coalescent-based species delimitation in an integrative taxonomy.Crossref | GoogleScholarGoogle Scholar |

Gardner, J., Heinsohn, R., and Joseph, L. (2009). Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proceedings of the Royal Society of London B: Biological Sciences 276, 3845–3852.

Gartside, D. F. (1982). The Litoria ewingi complex (Anura: Hylidae) in southeastern Australia. VI. Geographic variation in transferrins of four taxa. Australian Journal of Zoology 30, 103–113.
The Litoria ewingi complex (Anura: Hylidae) in southeastern Australia. VI. Geographic variation in transferrins of four taxa.Crossref | GoogleScholarGoogle Scholar |

Graham, C. H., Ferrier, S., Huettman, F., Moritz, C., and Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution 19, 497–503.
New developments in museum-based informatics and applications in biodiversity analysis.Crossref | GoogleScholarGoogle Scholar |

Grant, V. (1981). ‘Plant Speciation.’ 2nd edn. (Columbia University Press: New York.)

Grigg, J. W., and Buckley, L. B. (2014). Conservatism of lizard thermal tolerances and body temperature across evolutionary history and geography. Biology Letters 9, 20121056.

Gründler, M. C., and Rabosky, D. L. (2014). Trophic divergence despite morphological convergence in a continental radiation of snakes. Proceedings of the Royal Society of London B: Biological Sciences 281, 20140413.
Trophic divergence despite morphological convergence in a continental radiation of snakes.Crossref | GoogleScholarGoogle Scholar |

Haines, M. L., Mousalli, A., Stuart-Fox, D., Clemann, N., and Melville, J. (2014). Phylogenetic evidence of historical mitochondrial introgression and cryptic diversity in the genus Pseudomoia (Squmata: Scincidae). Molecular Phylogenetics and Evolution 81, 86–95.
Phylogenetic evidence of historical mitochondrial introgression and cryptic diversity in the genus Pseudomoia (Squmata: Scincidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1KmsbbM&md5=ab46c548b8c248536d61849ff16f7dd3CAS | 25242002PubMed |

Hillis, D. M., Moritz, C., and Mable, B. K. (1996). ‘Molecular Systematics.’ (Sinauer Associates: Sunderland, MA.)

Horner, P., and Adams, M. (2007). A molecular systematic assessment of species boundaries in Australian Cryptoblepharus (Reptilia: Squamata: Scincidae) – a case study for the combined use of allozymes and morphology to explore cryptic biodiversity. The Beagle. Records of the Museums and Art Galleries of the Northern Territory , 1–19.

Hoskin, C. J. (2007). Description, biology and conservation of a new species of Australian tree frog (Amphibia: Anura: Hylidae: Litoria) and an assessment of the remaining populations of Litoria genimaculata Horst, 1883: systematic and conservation implications of an unusual speciation event. Biological Journal of the Linnean Society 91, 549–563.
Description, biology and conservation of a new species of Australian tree frog (Amphibia: Anura: Hylidae: Litoria) and an assessment of the remaining populations of Litoria genimaculata Horst, 1883: systematic and conservation implications of an unusual speciation event.Crossref | GoogleScholarGoogle Scholar |

Hoskin, C. J., and Couper, P. J. (2013). A spectacular new leaf-tailed gecko (Carphodactylidae: Saltuarius) from the Melville Range, north-east Australia. Zootaxa 3717, 543–558.
A spectacular new leaf-tailed gecko (Carphodactylidae: Saltuarius) from the Melville Range, north-east Australia.Crossref | GoogleScholarGoogle Scholar |

Hoskin, C. J., and Couper, P. J. (2014). Two new skinks (Scincidae: Glaphyromorphus) from rainforest habitats in north-eastern Australia. Zootaxa 3869, 001–016.
Two new skinks (Scincidae: Glaphyromorphus) from rainforest habitats in north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Hoskin, C. J., Higgie, M., McDonald, K. R., and Moritz, C. (2005). Reinforcement drives rapid allopatric speciation. Nature 437, 1353–1356.
Reinforcement drives rapid allopatric speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCrurzI&md5=3da2db464e980a3d15feec1a7d539dcbCAS | 16251964PubMed |

Hoskin, C. J., Tonione, M., Higgie, M., MacKenzie, J. B., Williams, S. E., VanDerWal, J., and Moritz, C. (2011). Persistence in peripheral refugia promotes phenotypic divergence and speciation in a rainforest frog. American Naturalist 178, 561–578.
Persistence in peripheral refugia promotes phenotypic divergence and speciation in a rainforest frog.Crossref | GoogleScholarGoogle Scholar | 22030727PubMed |

Hudson, R. R., and Coyne, J. A. (2002). Mathematical consequences of the genealogical species concept. Evolution 56, 1557–1565.
Mathematical consequences of the genealogical species concept.Crossref | GoogleScholarGoogle Scholar | 12353748PubMed |

Hull, D. L. (1977). The ontological status of species as evolutionary units. In ‘Foundational Problems in the Special Sciences’. (Eds R. Butts and J. Hintikka.) pp. 91–102. (D. Reidel Publishing Company: Dordrecht, Holland.)

Hutchinson, M. N., and Donnellan, S. C. (1992). Taxonomy and genetic variation in the Australian lizards of the genus Pseudemoia (Scincidae: Lygosominae). Journal of Natural History 26, 215–264.
Taxonomy and genetic variation in the Australian lizards of the genus Pseudemoia (Scincidae: Lygosominae).Crossref | GoogleScholarGoogle Scholar |

Jolley-Rogers, G., Varghese, T., Harvey, P., dos Remedios, N., and Miller, J. T. (2014). PhyloJIVE: integrating biodiversity data with the Tree of Life. Bioinformatics 30, 1308–1309.
PhyloJIVE: integrating biodiversity data with the Tree of Life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFCjsr0%3D&md5=019e939f5a88203c4a2a1cbd08cd3f49CAS | 24443378PubMed |

Kawakami, T., Smeds, L., Backström, N., Husby, A., Qvarnström, A., Mugal, C. F., Olason, P., and Ellegren, H. (2014). A high‐density linkage map enables a second‐generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution. Molecular Ecology 23, 4035–4058.
A high‐density linkage map enables a second‐generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXht1OrsLnN&md5=3fa1a6de87160745deb2986e3e84390bCAS | 24863701PubMed |

Kay, G., and Keogh, J. S. (2012). Molecular phylogeny and morphological revision of the Ctenotus labillardieri (Reptilia: Squamata: Scincidae) species group and a new species of immediate conservation concern in the southwestern Australian biodiversity hotspot. Zootaxa 3390, 1–18.

Kearney, M., and Shine, R. (2004). Developmental success, stability and plasticity in closely-related parthenogenetic and sexual lizards (Heteronotia, Gekkonidae). Evolution 58, 1560–1572.
Developmental success, stability and plasticity in closely-related parthenogenetic and sexual lizards (Heteronotia, Gekkonidae).Crossref | GoogleScholarGoogle Scholar | 15341158PubMed |

Keogh, J. S., Scott, I. A. W., and Hayes, C. (2005). Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes. Evolution 59, 226–233.
Rapid and repeated origin of insular gigantism and dwarfism in Australian tiger snakes.Crossref | GoogleScholarGoogle Scholar | 15792242PubMed |

King, M. (1979). Karyotypic evolution in Gehyra (Gekkonidae:Reptilia). I. The Gehyra variegata–punctata complex. Australian Journal of Zoology 27, 373–393.
Karyotypic evolution in Gehyra (Gekkonidae:Reptilia). I. The Gehyra variegata–punctata complex.Crossref | GoogleScholarGoogle Scholar |

King, M. (1982). Karyotypic evolution in Gehyra (Gekkonidae: Reptilia). II. A new species from the Alligator Rivers region in northern Australia. Australian Journal of Zoology 30, 93–101.
Karyotypic evolution in Gehyra (Gekkonidae: Reptilia). II. A new species from the Alligator Rivers region in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Leaché, A. D., Helmer, D., and Moritz, C. (2010). Phenotypic evolution in high elevation populations of western fence lizards (Sceloporus occidentalis) in the Sierra Nevada Mountains. Biological Journal of the Linnean Society 100, 630–641.
Phenotypic evolution in high elevation populations of western fence lizards (Sceloporus occidentalis) in the Sierra Nevada Mountains.Crossref | GoogleScholarGoogle Scholar |

Leaché, A. D., Fujita, M. K., Minin, V., and Bouckaert, R. (2014). Species delimitation using genome-wide SNP data. Systematic Biology 63, 534–542.
Species delimitation using genome-wide SNP data.Crossref | GoogleScholarGoogle Scholar | 24627183PubMed |

Lemmon, A. R., and Lemmon, E. M. (2012). High-throughput development of informative nuclear loci for shallow-scale phylogenetics and phylogeography. Systematic Biology 61, 745–761.
High-throughput development of informative nuclear loci for shallow-scale phylogenetics and phylogeography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wlsb3L&md5=78f25f56c171db4aa7fb3d2dd8870b31CAS | 22610088PubMed |

Lemmon, E. M., and Lemmon, A. R. (2013). High-throughput genomic data in systematics and phylogenetics. Annual Review of Ecology Evolution and Systematics 44, 99–121.
High-throughput genomic data in systematics and phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Macdonald, S. (2014). Australian Reptiles Online Database. Available at: http://www.arod.com.au/arod/ (accessed 20 October 2014).

Mallet, J. (2005). Hybridization as an invasion of the genome. Trends in Ecology & Evolution 20, 229–237.
Hybridization as an invasion of the genome.Crossref | GoogleScholarGoogle Scholar |

Marin, J., Donnellan, S. C., Hedges, S. B., Puillandre, N., Aplin, K. P., Doughty, P., Hutchinson, M. N., Couloux, A., and Vidal, N. (2013). Hidden species diversity of Australian burrowing snakes (Ramphotyphlops). Biological Journal of the Linnean Society 110, 427–441.
Hidden species diversity of Australian burrowing snakes (Ramphotyphlops).Crossref | GoogleScholarGoogle Scholar |

Mayr, E. (1970). ‘Populations, Species and Evolution.’ (Harvard University Press: Cambridge, MA.)

McLean, C. A., Moussalli, A., Sass, S., and Stuart-Fox, D. (2013). Taxonomic assessment of the Ctenophorus decresii complex (Reptilia: Agamidae) reveals a new species of dragon lizard from western New South Wales. Records of the Australian Museum 65, 51–63.
Taxonomic assessment of the Ctenophorus decresii complex (Reptilia: Agamidae) reveals a new species of dragon lizard from western New South Wales.Crossref | GoogleScholarGoogle Scholar |

Melville, J. E., Smith, K. L., Hobson, R., Hunjan, S., and Shoo, L. (2014). The role of integrative taxonomy in the conservation management of cryptic species: the taxonomic status of endangered earless dragons (Agamidae: Tympanocryptis) in the grasslands of Queensland, Australia. PLoS ONE 9, e101847.
The role of integrative taxonomy in the conservation management of cryptic species: the taxonomic status of endangered earless dragons (Agamidae: Tympanocryptis) in the grasslands of Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Miralles, A., and Vences, M. (2013). New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in Madascincus lizards. PLoS ONE 8, e68242.
New metrics for comparison of taxonomies reveal striking discrepancies among species delimitation methods in Madascincus lizards.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFymtLjN&md5=3706a5051bb13be4056220024b4c5d95CAS | 23874561PubMed |

Mittermeier, R. A., Robles-Gil, P., and Mittermeier, C. G. (Eds) (1997). ‘Megadiversity: Earth’s Biologically Wealthiest Nations.’ (CEMEX/Agrupaciaon Sierra Madre: Mexico City).

Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
Defining ‘Evolutionarily Significant Units’ for conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=9a31bfc21759db2791c1e0ee1442b6f3CAS |

Moritz, C. (2002). Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology 51, 238–254.
Strategies to protect biological diversity and the evolutionary processes that sustain it.Crossref | GoogleScholarGoogle Scholar | 12028731PubMed |

Moritz, C., Hoskin, C. J., MacKenzie, J. B., Phillips, B. L., Tonione, M., Silva, N., VanDerWal, J., Williams, S. E., and Graham, C. H. (2009). Identification and dynamics of a cryptic suture zone in tropical rainforest. Proceedings of the Royal Society of London B: Biological Sciences 276, 1235–1244.
Identification and dynamics of a cryptic suture zone in tropical rainforest.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M3jsFWmug%3D%3D&md5=00e6eea5d483029fed8c8c401eea9441CAS |

Olave, M., Solà, E., and Knowles, L. L. (2014). Upstream analyses create problems with DNAbased species delimitation. Systematic Biology 63, 263–271.
Upstream analyses create problems with DNAbased species delimitation.Crossref | GoogleScholarGoogle Scholar | 24361591PubMed |

Oliver, P. M., and Lee, M. S. Y. (2010). The botanical and zoological codes impede biodiversity research by discouraging publication of unnamed new species. Taxon 59, 1201–1205.

Oliver, P. M., Hugall, A. H., Adams, M. A., Cooper, S. J. B., and Hutchinson, M. N. (2007). Genetic elucidation of cryptic and ancient diversity in a group of Australian diplodactyline geckos: the Diplodactylus vittatus complex. Molecular Phylogenetics and Evolution 44, 77–88.
Genetic elucidation of cryptic and ancient diversity in a group of Australian diplodactyline geckos: the Diplodactylus vittatus complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVOlu74%3D&md5=a9074ee779c7c4a4ae2df3b36552c748CAS |

Oliver, P., Doughty, P., Hutchinson, M. N., Lee, M. S. Y., and Adams, A. (2009). The taxonomic impediment in vertebrates: DNA sequence, allozyme and chromosomal data double estimates of species diversity in a lineage of Australian lizards (Diplodactylus, Gekkota). Proceedings of the Royal Society of London B: Biological Sciences 276, 2001–2007.
The taxonomic impediment in vertebrates: DNA sequence, allozyme and chromosomal data double estimates of species diversity in a lineage of Australian lizards (Diplodactylus, Gekkota).Crossref | GoogleScholarGoogle Scholar |

Oliver, P. M., Adams, M., and Doughty, P. (2010). Extreme underestimation of evolutionary diversity within a nominal Australian gecko species (Crenadactylus ocellatus). BMC Evolutionary Biology 10, 386.
Extreme underestimation of evolutionary diversity within a nominal Australian gecko species (Crenadactylus ocellatus).Crossref | GoogleScholarGoogle Scholar | 21156080PubMed |

Oliver, P. M., Doughty, P.,, and Palmer, R. (2012). Hidden biodiversity in rare northern Australian vertebrates: the case of the clawless geckos (Crenadactylus, Diplodactylidae) of the Kimberley. Wildlife Research 39, 429–435.
Hidden biodiversity in rare northern Australian vertebrates: the case of the clawless geckos (Crenadactylus, Diplodactylidae) of the Kimberley.Crossref | GoogleScholarGoogle Scholar |

Oliver, P. M., Couper, P., and Pepper, M. (2014a). Independent transitions between monsoonal and arid biomes revealed by systematic revison of a complex of Australian geckos (Diplodactylus; Diplodactylidae). PLoS ONE 9, e111895.
Independent transitions between monsoonal and arid biomes revealed by systematic revison of a complex of Australian geckos (Diplodactylus; Diplodactylidae).Crossref | GoogleScholarGoogle Scholar | 25493936PubMed |

Oliver, P. M., Smith, K. L., Laver, R. L., Doughty, P., and Adams, M. (2014b). Contrasting patterns of persistence and diversification in vicars of a widespread Australian lizard lineage (the Oedura marmorata complex). Journal of Biogeography 41, 2068–2079.
Contrasting patterns of persistence and diversification in vicars of a widespread Australian lizard lineage (the Oedura marmorata complex).Crossref | GoogleScholarGoogle Scholar |

Oliver, P. M., Laver, R. L., Melville, J. M., and Doughty, P. (2014c). A new species of Oedura from the limestone ranges of the southern Kimberley, Western Australia. Zootaxa 3873, 49–61.
A new species of Oedura from the limestone ranges of the southern Kimberley, Western Australia.Crossref | GoogleScholarGoogle Scholar | 25544205PubMed |

Padial, J. M., Miralles, A., De la Riva, I., and Vences, M. (2010). The integrative future of taxonomy. Frontiers in Zoology 7, 16.
The integrative future of taxonomy.Crossref | GoogleScholarGoogle Scholar | 20500846PubMed |

Peñalba, J. V., Smith, L. L., Tonione, M. A., Sass, C., Hykin, S. M., Skipwith, P. L., McGuire, J. A., Bowie, R. C. K., and Moritz, C. (2014). Sequence capture using PCR-generated probes (SCPP): a cost-effective method of targeted high-throughput sequencing for non-model organisms. Molecular Ecology Resources 14, 1000–1010.
| 24618181PubMed |

Pepper, M., Doughty, P., and Keogh, J. S. (2006). Molecular phylogeny and phylogeography of the Australian Diplodactylus stenodactylus (Gekkota; Reptilia) species-group based on mitochondrial and nuclear genes reveals an ancient split between Pilbara and non-Pilbara D. stenodactylus. Molecular Phylogenetics and Evolution 41, 539–555.
Molecular phylogeny and phylogeography of the Australian Diplodactylus stenodactylus (Gekkota; Reptilia) species-group based on mitochondrial and nuclear genes reveals an ancient split between Pilbara and non-Pilbara D. stenodactylus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CgsbbN&md5=8579705ab3f945b66e7b779134e2cc81CAS | 16843684PubMed |

Pepper, M., Doughty, P., Hutchinson, M. N., and Keogh, J. S. (2011a). Ancient drainages divide cryptic species in Australia’s arid zone: morphological and multi-gene evidence for four new species of beaked geckos (Rhynchoedura). Molecular Phylogenetics and Evolution 61, 810–822.
Ancient drainages divide cryptic species in Australia’s arid zone: morphological and multi-gene evidence for four new species of beaked geckos (Rhynchoedura).Crossref | GoogleScholarGoogle Scholar | 21884806PubMed |

Pepper, M., Fujita, M. K., Moritz, C., and Keogh, J. S. (2011b). Palaeoclimate change drove diversification among isolated mountain refugia in the Australian arid zone. Molecular Ecology 20, 1529–1545.
Palaeoclimate change drove diversification among isolated mountain refugia in the Australian arid zone.Crossref | GoogleScholarGoogle Scholar | 21371147PubMed |

Pepper, M., Doughty, P., and Keogh, J. S. (2013). Geodiversity and endemism in the iconic Australian Pilbara region: a review of landscape evolution and biotic response in an ancient refugium. Journal of Biogeography 40, 1225–1239.
Geodiversity and endemism in the iconic Australian Pilbara region: a review of landscape evolution and biotic response in an ancient refugium.Crossref | GoogleScholarGoogle Scholar |

Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., and Hoekstra, H. E. (2012). Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135.
Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosVeksrY%3D&md5=f4b624a262db559d8f6c65d5b63511ecCAS | 22675423PubMed |

Pianka, E. R. (1986). ‘Ecology and Natural History of Desert Lizards.’ (Princeton University Press: Princeton, NJ.)

Pinho, C., and Hey, J. (2010). Divergence with gene flow: models and data. Annual Review of Ecology, Evolution and Systematics 41, 215–230.
Divergence with gene flow: models and data.Crossref | GoogleScholarGoogle Scholar |

Powney, G. D., Grenyer, R., Orme, C. D. L., Owens, I. P. F., and Meiri, S. (2010). Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Global Ecology and Biogeography 19, 386–396.
Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds.Crossref | GoogleScholarGoogle Scholar |

Pyron, R. A., Burbrink, F. T., and Wiens, J. J. (2013). A phylogeny and updated classification of Squamata, including 4161 species of lizards and snakes. BMC Evolutionary Biology 13, 93.
A phylogeny and updated classification of Squamata, including 4161 species of lizards and snakes.Crossref | GoogleScholarGoogle Scholar | 23627680PubMed |

Rabosky, D. L., Donnellan, S. C., Talaba, A. L., and Lovette, I. J. (2007). Exceptional among-lineage variation in diversification rates during the radiation of Australia’s largest vertebrate clade. Proceedings of the Royal Society of London B: Biological Sciences 274, 2915–2923.
Exceptional among-lineage variation in diversification rates during the radiation of Australia’s largest vertebrate clade.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVamtg%3D%3D&md5=44cc23d1cd5cc60b516bdc335db6bce5CAS |

Rabosky, D. L., Talaba, A. L., Donnellan, S. C., and Lovette, I. J. (2009). Molecular evidence for hybridization between two Australian desert skinks, Ctenotus leonhardii and Ctenotus quattuordecimlineatus (Scincidae: Squamata). Molecular Phylogenetics and Evolution 53, 368–377.
Molecular evidence for hybridization between two Australian desert skinks, Ctenotus leonhardii and Ctenotus quattuordecimlineatus (Scincidae: Squamata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKls7nP&md5=93117a483442f9a75414553399355c37CAS | 19580879PubMed |

Rabosky, D. L., Hutchinson, M. N., Donnellan, S. C., Talaba, A. L., and Lovette, I. J. (2014a). Phylogenetic disassembly of species boundaries in a widespread group of Australian skinks (Scincidae: Ctenotus). Molecular Phylogenetics and Evolution 77, 71–82.
Phylogenetic disassembly of species boundaries in a widespread group of Australian skinks (Scincidae: Ctenotus).Crossref | GoogleScholarGoogle Scholar | 24732682PubMed |

Rabosky, D. L., Donnellan, S. C., Grundler, M., and Lovette, I. J. (2014b). Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Systematic Biology 63, 610–627.
Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards.Crossref | GoogleScholarGoogle Scholar | 24682412PubMed |

Reich, D., Patterson, N., Kircher, M., Delfin, F., Nandineni, M. R., Pugach, I., Ko, A. M., Ko, Y., Jinam, T. A., Phipps, M. E., Saitou, N., Wollstein, A., Kayser, M., Pa, S., and Stoneking, M. (2011). Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. American Journal of Human Genetics 89, 516–528.
Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht12rsLzM&md5=a89369f40fd0065bca973a074b0f7a34CAS | 21944045PubMed |

Reside, A. E., VanDerWal, J., Phillips, B. L., Shoo, L., Rosauer, D., Anderson, B. J., Welbergen, J. A., Moritz, C., Ferrier, S., and Harwood, T. D. (2013). Climate change refugia for terrestrial biodiversity: defining areas that promote species persistence and ecosystem resilience in the face of global climate change. National Climate Change Adaptation Research Facility, Canberra.

Rissler, L. J., Hijmans, R. J., Graham, C. H., Moritz, C., and Wake, D. B. (2006). Phylogeographic lineages and species comparisons in conservation analyses: a case study of California herpetofauna. American Naturalist 167, 655–666.
Phylogeographic lineages and species comparisons in conservation analyses: a case study of California herpetofauna.Crossref | GoogleScholarGoogle Scholar | 16671010PubMed |

Rittmeyer, E. N., and Austin, C. C. (2012). The effects of sampling on delimiting species from multilocus data. Molecular Phylogenetics and Evolution 65, 451–463.
The effects of sampling on delimiting species from multilocus data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtlOjur3L&md5=03c367f6876e8f6803468f2d49497941CAS | 22820460PubMed |

Rosenblum, E. B., Sarver, B. A. J., Brown, J. W., Des Roches, S., Hardwick, K. M., Hether, T. D., Eastman, J. M., Pennell, M. W., and Harmon, L. J. (2012). Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales. Evolutionary Biology 39, 255–261.
Goldilocks meets Santa Rosalia: an ephemeral speciation model explains patterns of diversification across time scales.Crossref | GoogleScholarGoogle Scholar | 22707806PubMed |

Ryder, O. A. (1986). Species conservation and systematics: the dilemma of subspecies. Trends in Ecology & Evolution 1, 9–10.
Species conservation and systematics: the dilemma of subspecies.Crossref | GoogleScholarGoogle Scholar |

Schindel, D., and Miller, S. E. (2010). Provisional nomenclature: the on-ramp to taxonomic names. In ‘Systema Naturae 250: The Linnaean Ark’. (Ed. A. Polaszek.) pp. 109–115. (CRC Press: Boca Raton, FL.)

Shea, G., Couper, P., Worthington Wilmer, J., and Amey, A. (2011). Revision of the genus Cyrtodactylus Gray, 1827 (Squamata: Gekkonidae) in Australia. Zootaxa 3146, 1–63.

Siler, C. D., Oaks, J. R., Cobb, K., Ota, H., and Brown, R. M. (2014). Critically endangered island endemic or peripheral population of a widespread species? Conservation genetics of Kikuchi’s gecko and the global challenge of protecting peripheral oceanic island endemic vertebrates. Diversity & Distributions 20, 756–772.
Critically endangered island endemic or peripheral population of a widespread species? Conservation genetics of Kikuchi’s gecko and the global challenge of protecting peripheral oceanic island endemic vertebrates.Crossref | GoogleScholarGoogle Scholar |

Singhal, S., and Moritz, C. (2014). Reproductive isolation between phylogeographic lineages scales with divergence. Proceedings of the Royal Society B: Biological Sciences 280, 20132246.

Sistrom, M., Donnellan, S. C., and Hutchinson, M. N. (2013). Delimiting species in recent radiations with low levels of morphological divergence: a case study in Australian Gehyra geckos. Molecular Phylogenetics and Evolution 68, 135–143.
Delimiting species in recent radiations with low levels of morphological divergence: a case study in Australian Gehyra geckos.Crossref | GoogleScholarGoogle Scholar | 23507430PubMed |

Sites, J. W., and Marshall, J. C. (2004). Operational criteria for delimiting species. Annual Review of Ecology, Evolution and Systematics 35, 199–227.

Smith, B. T., Harvey, M. G., Faircloth, B. C., Glenn, T. C., and Brumfield, R. T. (2014). Target capture and massively parallel sequencing of ultraconserved elements (UCEs) for comparative studies at shallow evolutionary time scales. Systematic Biology 63, 83–95.
Target capture and massively parallel sequencing of ultraconserved elements (UCEs) for comparative studies at shallow evolutionary time scales.Crossref | GoogleScholarGoogle Scholar | 24021724PubMed |

Smith, K., Harmon, L. J., Shoo, L. P., and Melville, J. E. (2011). Evidence of constrained phenotypic evolution in a cryptic species complex of agamid lizards. Evolution 65, 976–992.
Evidence of constrained phenotypic evolution in a cryptic species complex of agamid lizards.Crossref | GoogleScholarGoogle Scholar | 21166790PubMed |

Soberón, J., and Peterson, T. (2004). Biodiversity informatics: managing and applying primary biodiversity data. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359, 689–698.
Biodiversity informatics: managing and applying primary biodiversity data.Crossref | GoogleScholarGoogle Scholar | 15253354PubMed |

Uetz, P., and Hosek, J. (2014). The reptile database. Available at: http://www.reptile-database.org (accessed 10 October 2014).

Vieites, D. R., Wollenberg, K. C., Andreone, F., Köhler, J., Glaw, F., and Vences, M. (2009). Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proceedings of the National Academy of Sciences of the United States of America 106, 8267–8272.
Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVWmt74%3D&md5=b389583e841c96fc29db52be54b07712CAS | 19416818PubMed |

Wilson, S., and Swan, G. (2013). ‘A Complete Guide to Reptiles of Australia.’ 4th edn. (New Holland Publishers: Sydney.)

Woinarski, J. C., Legge, S., Fitzsimons, J. A., Traill, B. J., Burbidge, A. A., Fisher, A., Firth, R. S. C., Gordon, I. J., Griffiths, A. D., Johnson, C. N., McKenzie, N. L., Palmer, C., Radford, I., Rankmore, B., Ritchie, E. G., Ward, S., and Ziembicki, M. (2011). The disappearing mammal fauna of northern Australia: context, cause, and response. Conservation Letters 4, 192–201.
The disappearing mammal fauna of northern Australia: context, cause, and response.Crossref | GoogleScholarGoogle Scholar |

Yang, M. A., Malaspinas, A. S., Durand, E. Y., and Slatkin, M. (2012). Ancient structure in Africa unlikely to explain neanderthal and non-African genetic similarity. Molecular Biology and Evolution 29, 2987–2995.
Ancient structure in Africa unlikely to explain neanderthal and non-African genetic similarity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVehtbrO&md5=46a43a550834e0d06de334b9a401daf5CAS | 22513287PubMed |

Yeates, D. K., Seago, A., Nelson, L., Cameron, S. L., Joseph, L., and Trueman, J. W. H. (2011). Integrative taxonomy, or iterative taxonomy? Systematic Entomology 36, 209–217.
Integrative taxonomy, or iterative taxonomy?Crossref | GoogleScholarGoogle Scholar |

Zhang, C., Zhang, D., Zhu, T., and Yang, Z. (2011). Evaluation of a Bayesian coalescent method of species delimitation. Systematic Biology 60, 747–761.
Evaluation of a Bayesian coalescent method of species delimitation.Crossref | GoogleScholarGoogle Scholar | 21876212PubMed |

Zhang, C., Rannala, B., and Yang, Z. (2014). Bayesian species delimitation can be robust to guide-tree inference errors. Systematic Biology 63, 993–1004.
Bayesian species delimitation can be robust to guide-tree inference errors.Crossref | GoogleScholarGoogle Scholar | 25096853PubMed |