Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Random non-coding fragments of lizard DNA: anonymous nuclear loci for the Australian skink, Tiliqua rugosa, and their utility in other Egernia-group species

Talat Hojat Ansari A , Terry Bertozzi B C , Jessica Hacking A , Steven J. B. Cooper B C and Michael G. Gardner A B D
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.

B Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

C Australian Centre for Evolutionary Biology and Biodiversity and the School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

D Corresponding author. Email: michael.gardner@flinders.edu.au

Australian Journal of Zoology 62(6) 515-518 https://doi.org/10.1071/ZO14085
Submitted: 16 October 2014  Accepted: 2 February 2015   Published: 17 February 2015

Abstract

We report the development of 48 anonymous nuclear loci from the Australian skink Tiliqua rugosa using 454 sequencing. These loci amplified across a Western Australian lineage (47 loci), a ‘northern’ lineage (48 loci) and a ‘southern’ lineage (46 loci). We further tested amplification for the related T. adelaidensis and Egernia stokesii where 37 and 34 loci amplified respectively. The loci showed variability within T. rugosa (22 polymorphic loci) and at least 27 loci also exhibited variation among the three species, highlighting the usefulness of these markers for phylogenetic, phylogeographic and population genetic analyses in T. rugosa and related species.

Additional keywords: DNA markers, phylogeography, squamate.


References

Balakrishnan, C. N., Lee, J. Y., and Edwards, S. V. (2010). Phylogeography and phylogenetics in the nuclear age. In ‘In Search of the Causes of Evolution: From Field Observations to Mechanisms’. (Eds P. R. Grant, and B. R. Grant.) pp. 65–88. (Princeton University Press: Princeton, NJ.)

Bertozzi, T., Sanders, K. L., Sistrom, M. J., and Gardner, M. G. (2012). Anonymous nuclear loci in non-model organisms: making the most of high-throughput genome surveys. Bioinformatics 28, 1807–1810.
Anonymous nuclear loci in non-model organisms: making the most of high-throughput genome surveys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVSgsbjO&md5=a758ee94a6990d8b068c043d219ccfbcCAS | 22581180PubMed |

Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K. H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=510c543b2e02347093cbe5cd6436b0b5CAS | 18761619PubMed |

Cooper, S. J. B., Ibrahim, K. M., and Hewitt, G. M. (1995). Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Molecular Ecology 4, 49–60.
Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltlegsb0%3D&md5=0e8925769867e665b1f8e976aff32aa8CAS |

Dolman, G., and Phillips, B. (2004). Single copy nuclear DNA markers characterized for comparative phylogeography in Australian wet tropics rainforest skinks. Molecular Ecology Notes 4, 185–187.
Single copy nuclear DNA markers characterized for comparative phylogeography in Australian wet tropics rainforest skinks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlt1Chs7c%3D&md5=899969f570e973154ef656ed9e8320f8CAS |

Excoffier, L., and Lischer, H. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564–567.
Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows.Crossref | GoogleScholarGoogle Scholar | 21565059PubMed |

Gardner, M. G., Hugall, A. F., Donnellan, S. C., Hutchinson, M. N., and Foster, R. (2008). Molecular systematics of social skinks: phylogeny and taxonomy of the Egernia group (Reptilia: Scincidae). Zoological Journal of the Linnean Society 154, 781–794.
Molecular systematics of social skinks: phylogeny and taxonomy of the Egernia group (Reptilia: Scincidae).Crossref | GoogleScholarGoogle Scholar |

Gardner, M. G., Fitch, A. J., Bertozzi, T., and Lowe, A. J. (2011). Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources 11, 1093–1101.
Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development.Crossref | GoogleScholarGoogle Scholar | 21679314PubMed |

Hughes, S., and Mouchiroud, D. (2001). High evolutionary rates in nuclear genes of Squamates. Journal of Molecular Evolution 53, 70–76.
| 1:CAS:528:DC%2BD3MXktF2mtL8%3D&md5=6d9bb27ce2804aa0438cc9ee439c023dCAS | 11683325PubMed |

Lee, J. Y., and Edwards, S. V. (2008). Divergence across Australia’s Carpentarian barrier: statistical phylogeography of the red-backed fairy wren (Malurus melanocephalus). Evolution 62, 3117–3134.
Divergence across Australia’s Carpentarian barrier: statistical phylogeography of the red-backed fairy wren (Malurus melanocephalus).Crossref | GoogleScholarGoogle Scholar | 19087188PubMed |

Meglécz, E., Nève, G., Biffin, E., and Gardner, M. G. (2012a). Breakdown of phylogenetic signal: a survey of microsatellite densities in 454 shotgun sequences from 154 non model eukaryote species. PLoS ONE 7, e40861.
Breakdown of phylogenetic signal: a survey of microsatellite densities in 454 shotgun sequences from 154 non model eukaryote species.Crossref | GoogleScholarGoogle Scholar | 22815847PubMed |

Meglécz, E., Nève, G., Biffin, E., and Gardner, M. G. (2012b). Data from: Breakdown of phylogenetic signal: a survey of microsatellite densities in 454 shotgun sequences from 154 non model eukaryote species. Dryad Digital Repository.

Price, A. L., Jones, N. C., and Pevzner, P. A. (2005). De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358.
De novo identification of repeat families in large genomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslyrsrg%3D&md5=9d122c5ceac16d0f8fd50ae6fc4b33f5CAS | 15961478PubMed |

Rosenblum, E. B., Belfiore, N. M., and Moritz, C. (2007). Anonymous nuclear markers for the eastern fence lizard, Sceloporus undulatus. Molecular Ecology Notes 7, 113–116.
Anonymous nuclear markers for the eastern fence lizard, Sceloporus undulatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXis1Sisrw%3D&md5=900906d5d52dea70b036c515d491f4d2CAS |

Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. In ‘Methods in Molecular Biology. Vol. 132: Bioinformatics Methods and Protocols’. (Eds S. Misener and S. A. Krawetz.) pp. 365–386. (Humana Press Inc.: Totowa, NJ.)

Smit, A. F. A., Hubley, R., and Green, P. (2010). RepeatMasker open-3.0. Available from: http://repeatmasker.org

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 2731–2739.
MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1eiu73K&md5=2e70b81a02c76af9fa66484f77507efeCAS | 21546353PubMed |

Thomson, R. C., Shedlock, A. M., Edwards, S. V., and Shaffer, H. B. (2008). Developing markers for multilocus phylogenetics in non-model organisms: a test case with turtles. Molecular Phylogenetics and Evolution 49, 514–525.
Developing markers for multilocus phylogenetics in non-model organisms: a test case with turtles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCrtb7O&md5=4dce3e960559251f661785b60bea7f26CAS | 18761096PubMed |

Thomson, R. C., Wang, I. J., and Johnson, J. R. (2010). Genome-enabled development of DNA markers for ecology, evolution and conservation. Molecular Ecology 19, 2184–2195.
Genome-enabled development of DNA markers for ecology, evolution and conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovFCls7s%3D&md5=b30713db225ecb8a8e6892880112b84cCAS | 20465588PubMed |