Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Piles of scats for piles of DNA: deriving DNA of lizards from their faeces

S. K. Pearson A C , S. S. Tobe A , D. A. Fusco A , C. M. Bull A and M. G. Gardner A B
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.

B Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

C Corresponding author. Email: sarah.pearson@flinders.edu.au

Australian Journal of Zoology 62(6) 507-514 https://doi.org/10.1071/ZO14059
Submitted: 1 August 2014  Accepted: 9 February 2015   Published: 24 February 2015

Abstract

Non-invasive genetic sampling using scats has a well established role in conservation biology, but has rarely been applied to reptiles. Using scats from captive and wild Egernia stokesii (Squamata, Scincidae) we evaluated two storage and six DNA-extraction methods and the reliability of subsequent genotype and sequence data. Accurate genotype and sequence data were obtained from frozen and dried captive lizard scat DNA extracted using a QIAamp® DNA Stool Mini Kit and a modified Gentra® Puregene® method, but success rates were reduced for wild lizard scats. Wild E. stokesii eat more plants than their captive counterparts, possibly resulting in scat DNA extracts containing plant compounds that inhibit PCR-amplifications. Notably, reliable genotypes and sequences were obtained from wild E. stokesii scat DNA extracted using a Qiagen DNeasy® Plant Mini Kit, a method designed to remove plant inhibitory compounds. Results highlight the opportunity for using scat-derived DNA in lizard studies, particularly for species that deposit scats in piles.

Additional keywords: DNA extraction, Egernia group, faecal DNA, lizard scat, microsatellites, non-invasive sampling, PCR inhibition.


References

Alacs, E., Alpers, D., de Tores, P. J., Dillon, M., and Spencer, P. B. S. (2003). Identifying the presence of quokkas (Setonix brachyurus) and other macropods using cytochrome b analyses from faeces. Wildlife Research 30, 41–47.
Identifying the presence of quokkas (Setonix brachyurus) and other macropods using cytochrome b analyses from faeces.Crossref | GoogleScholarGoogle Scholar |

Arandjelovic, M., Guschanski, K., Schubert, G., Harris, R., Thalmann, O., Siedel, H., and Vigilant, L. (2009). Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples. Molecular Ecology Resources 9, 28–36.
Two-step multiplex polymerase chain reaction improves the speed and accuracy of genotyping using DNA from noninvasive and museum samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFGms70%3D&md5=2e93d54ece1a2ef8ef8f8f36c23884c6CAS | 21564562PubMed |

Arida, E. A., and Bull, C. M. (2008). Optimising the design of artificial refuges for the Australian skink, Egernia stokesii. Applied Herpetology 5, 161–172.
Optimising the design of artificial refuges for the Australian skink, Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Ball, M. C., Pither, R., Manseau, M., Clark, J., Petersen, S. D., Kingston, S., Morrill, N., and Wilson, P. (2007). Characterisation of target nuclear DNA from faeces reduces technical issues associated with the assumptions of low-quality and quantity template. Conservation Genetics 8, 577–586.
Characterisation of target nuclear DNA from faeces reduces technical issues associated with the assumptions of low-quality and quantity template.Crossref | GoogleScholarGoogle Scholar |

Barrows, C. W. (2006). Population dynamics of a threatened sand dune lizard. The Southwestern Naturalist 51, 514–523.
Population dynamics of a threatened sand dune lizard.Crossref | GoogleScholarGoogle Scholar |

Beja-Pereira, A., Oliveira, R., Alves, P. C., Schwarz, M. K., and Luikart, G. (2009). Advancing ecological understanding through technological transformations in noninvasive genetics. Molecular Ecology Resources 9, 1279–1301.
Advancing ecological understanding through technological transformations in noninvasive genetics.Crossref | GoogleScholarGoogle Scholar | 21564900PubMed |

Brinkman, T. J., Person, D. K., Schwartz, M. K., Pilgrim, K. L., Colson, K. E., and Hundertmark, K. J. (2010). Individual identification of Sitka black-tailed deer (Odocoileus hemionus sitkensis) using DNA from fecal pellets. Conservation Genetics Resources 2, 115–118.
Individual identification of Sitka black-tailed deer (Odocoileus hemionus sitkensis) using DNA from fecal pellets.Crossref | GoogleScholarGoogle Scholar |

Broquet, T., and Petit, E. (2004). Quantifying genotyping errors in noninvasive population genetics. Molecular Ecology 13, 3601–3608.
Quantifying genotyping errors in noninvasive population genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVWkurbN&md5=8fa7f0cd4ad1d9dbabcfccd2e5711a7aCAS | 15488016PubMed |

Broquet, T., Menard, N., and Petit, E. (2007). Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates. Conservation Genetics 8, 249–260.
Noninvasive population genetics: a review of sample source, diet, fragment length and microsatellite motif effects on amplification success and genotyping error rates.Crossref | GoogleScholarGoogle Scholar |

Bull, C. M., Griffith, S. C., and Perkins, M. V. (1999). Some properties of a pheromone allowing individual recognition, from the scats of an Australian lizard, Egernia striolata. Acta Ethologica 2, 35–42.
Some properties of a pheromone allowing individual recognition, from the scats of an Australian lizard, Egernia striolata.Crossref | GoogleScholarGoogle Scholar |

Casquet, J., Thebaud, C., and Gillespie, R. G. (2011). Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Molecular Ecology Resources 2, 136–141.

Cogger, H. G. (1983). ‘Reptiles and Amphibians of Australia.’ (AH & AW Reed Pty Ltd: Sydney.)

DeMay, S. M., Becker, P. A., Eidson, C. A., Rachlow, J. L., Johnson, T. R., and Waits, L. P. (2013). Evaluating DNA degradation rates in faecal pellets of the endangered pygmy rabbit. Molecular Ecology Resources 13, 654–662.
Evaluating DNA degradation rates in faecal pellets of the endangered pygmy rabbit.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVaqt7Y%3D&md5=c2a90079a61dd9babb139f1c7fd1af98CAS | 23590236PubMed |

Deuter, R., Pietsch, S., Hertel, S., and Muller, O. (1995). A method of preparation of fecal DNA suitable for PCR. Nucleic Acids Research 23, 3800–3801.
A method of preparation of fecal DNA suitable for PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXoslynt7k%3D&md5=ea91b8c2e6c9468ee9e3b76837bba1b7CAS | 7479018PubMed |

Duffield, G. A., and Bull, C. M. (1998). Seasonal and ontogenetic changes in the diet of the Australian skink Egernia stokesii. Herpetologica 54, 414–419.

Duffield, G. A., and Bull, C. M. (2002). Stable aggregations in an Australian lizard, Egernia stokesii. Naturwissenschaften 89, 424–427.
Stable aggregations in an Australian lizard, Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1ymsbw%3D&md5=4a23b8cd4334c0a84f845d52aba2346eCAS | 12435097PubMed |

Fenner, A. L., and Bull, C. M. (2008). The impact of nematode parasites on the behaviour of an Australian lizard, the gidgee skink Egernia stokesii. Ecological Research 23, 897–903.
The impact of nematode parasites on the behaviour of an Australian lizard, the gidgee skink Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Frantz, A. C., Pope, L. C., Carpenter, P. J., Roper, T. J., Wilson, G. J., Delahay, R. J., and Burke, T. (2003). Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Molecular Ecology 12, 1649–1661.
Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltlKhtLY%3D&md5=f9666d90eb9efccc758a73738a44c6a8CAS | 12755892PubMed |

Gardner, M. G., Cooper, S. J. B., Bull, C. M., and Grant, W. N. (1999). Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure. The Journal of Heredity 90, 301–304.
Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1yktLw%3D&md5=a99b74e1a0cabd6d974154f14908d756CAS |

Gardner, M. G., Bull, C. M., Cooper, J. B., and Duffied, G. A. (2001a). Genetic evidence for a family structure in stable social aggregations of the Australian lizard Egernia stokesii. Molecular Ecology 10, 175–183.
Genetic evidence for a family structure in stable social aggregations of the Australian lizard Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvitFOisw%3D%3D&md5=a419046376274dda57a3b27713a6c93bCAS | 11251796PubMed |

Gardner, M. G., Bull, C. M., Cooper, S. J. B., and Duffield, G. A. (2001b). Genetic evidence for a family structure in stable social aggregations of the Australian lizard Egernia stokesii. Molecular Ecology 10, 175–183.
Genetic evidence for a family structure in stable social aggregations of the Australian lizard Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvitFOisw%3D%3D&md5=a419046376274dda57a3b27713a6c93bCAS | 11251796PubMed |

Gardner, M. G., Bull, C. M., and Cooper, S. J. B. (2002). High levels of genetic monogamy in the group-living Australian lizard Egernia stokesii. Molecular Ecology 11, 1787–1794.
High levels of genetic monogamy in the group-living Australian lizard Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVWhtrw%3D&md5=cd87231614dd287d15132a99a07a9955CAS | 12207728PubMed |

Gardner, M. G., Bull, C. M., Fenner, A, Murray, K, and Donnellan, S. C. (2007). Consistent social structure within aggregations of the Australian lizard, Egernia stokesii across seven disconnected rocky outcrops. Journal of Ethology 25, 263–270.
Consistent social structure within aggregations of the Australian lizard, Egernia stokesii across seven disconnected rocky outcrops.Crossref | GoogleScholarGoogle Scholar |

Gardner, M. G., Sanchez, J. J., Dudaniec, R. Y., Rheinberger, L., Smith, A. L., and Saint, K. S. (2008). Tiliqua rugosa microsatellites: isolation via enrichment and characterisation of loci for multiplex PCR in T. rugosa and the endangered T. adelaidensis. Conservation Genetics 9, 233–237.
Tiliqua rugosa microsatellites: isolation via enrichment and characterisation of loci for multiplex PCR in T. rugosa and the endangered T. adelaidensis.Crossref | GoogleScholarGoogle Scholar |

Germano, D. J., Smith, P. T., and Tabor, S. P. (2007). Food habits of the blunt-nosed leopard lizard (Gambelia sila). The Southwestern Naturalist 52, 318–323.
Food habits of the blunt-nosed leopard lizard (Gambelia sila).Crossref | GoogleScholarGoogle Scholar |

Harris, R. B., Winnie, J., Amish, S. J., Beja-Pereira, A, Godinho, R, Costa, V, and Luikart, G (2010). Argali abundance in the Afghan Pamir using capture–recapture modeling from fecal DNA. Journal of Wildlife Management 74, 668–677.
Argali abundance in the Afghan Pamir using capture–recapture modeling from fecal DNA.Crossref | GoogleScholarGoogle Scholar |

Hebert, L., Darden, S. K., Pedersen, B. V., and Dabelsteen, T. (2011). Increased DNA amplification success of non-invasive genetic samples by successful removal of inhibitors from faecal samples collected in the field. Conservation Genetics Resources 3, 41–43.
Increased DNA amplification success of non-invasive genetic samples by successful removal of inhibitors from faecal samples collected in the field.Crossref | GoogleScholarGoogle Scholar |

Iyengar, A., Babu, V. N., Hedges, S., Venkataraman, B., Maclean, N., and Morin, P. A. (2005). Phylogeography, genetic structure, and diversity in the dhole (Cuon alpinus). Molecular Ecology 14, 2281–2297.
Phylogeography, genetic structure, and diversity in the dhole (Cuon alpinus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qsL8%3D&md5=4602e2a2fa68674ea10c46413b02e972CAS | 15969714PubMed |

Jones, R., Cable, J., and Bruford, M. W. (2008). An evaluation of non-invasive sampling for genetic analysis in northern European reptiles. The Herpetological Journal 18, 32–39.

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. 28, 1647–1649.
| 22543367PubMed |

Kohn, M. H., and Wayne, R. K. (1997). Facts from feces revisited. Trends in Ecology & Evolution 12, 223–227.
Facts from feces revisited.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFKksg%3D%3D&md5=e06dd27f690145c6c66bdd66cc31bfccCAS |

Lanham, E. J., and Bull, C. M. (2004). Enhanced vigilance in groups in Egernia stokesii, a lizard with stable social aggregations. Journal of Zoology 263, 95–99.
Enhanced vigilance in groups in Egernia stokesii, a lizard with stable social aggregations.Crossref | GoogleScholarGoogle Scholar |

Main, A. R., and Bull, C. M. (1996). Mother–offspring recognition in two Australian lizards, Tiliqua rugosa and Egernia stokesii. Animal Behaviour 52, 193–200.
Mother–offspring recognition in two Australian lizards, Tiliqua rugosa and Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Marrero, P., Fregel, R., Cabrera, V. M., and Nogales, M. (2009). Extraction of high-quality host DNA from feces and regurgitated seeds: a useful tool for vertebrate ecological studies. Biological Research 42, 147–151.
Extraction of high-quality host DNA from feces and regurgitated seeds: a useful tool for vertebrate ecological studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVaktbk%3D&md5=31a0ea3b6c38fc0ab4f7f6950d00b500CAS | 19746259PubMed |

Monroe, C., Grier, C., and Kemp, B. M. (2013). Evaluating the efficiency of various thermo-stable polymerases against co-extracted PCR inhibitors in ancient DNA samples. Forensic Science International 228, 142–153.
Evaluating the efficiency of various thermo-stable polymerases against co-extracted PCR inhibitors in ancient DNA samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmt1Oktbw%3D&md5=959b74620ece42f19135455906ba237bCAS | 23597751PubMed |

Monteiro, L., Bonnemaison, D., Vekris, A., Petry, K. G., Bonnet, J., Vidal, R., Cabrita, J., and Mégraud, F. (1997). Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. Journal of Clinical Microbiology 35, 995–998.
| 1:CAS:528:DyaK2sXitlartbo%3D&md5=85ede5af61f590584c5914c68424c273CAS | 9157172PubMed |

Morin, P. A., Chambers, K. E., Boesch, C., and Vigilant, L. (2001). Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Molecular Ecology 10, 1835–1844.
Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVynsLg%3D&md5=df8ed35849f78512ccfb76f6f2ab5df8CAS | 11472550PubMed |

Murphy, M. A., Kendall, K. C., Robinson, A., and Waits, L. P. (2007). The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification. Conservation Genetics 8, 1219–1224.
The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification.Crossref | GoogleScholarGoogle Scholar |

Nagy, Z. T. (2010). A hands-on overview of tissue preservation methods for molecular genetic analyses. Organisms, Diversity & Evolution 10, 91–105.
A hands-on overview of tissue preservation methods for molecular genetic analyses.Crossref | GoogleScholarGoogle Scholar |

Navidi, W., Arnheim, N., and Waterman, M. S. (1992). A multiple-tubes approach for accurate genotyping of very small DNA samples by using PCR: statistical considerations. American Journal of Human Genetics 50, 347–359.
| 1:CAS:528:DyaK38XltVGhsbc%3D&md5=2e4e3c3812feb7cbea1aacddd98f5b3cCAS | 1734715PubMed |

Nsubuga, A. M., Robbins, M. M., Roeder, A. D., Morin, A., Boesch, C., and Vigilant, L. (2004). Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method. Molecular Ecology 13, 2089–2094.
Factors affecting the amount of genomic DNA extracted from ape faeces and the identification of an improved sample storage method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlvFeksrc%3D&md5=6e2e866b291bba90855977c0e170702cCAS | 15189228PubMed |

Panasci, M., Ballard, W. B., Breck, S., Rodriguez, D., Densmore, L. D., Wester, D. B., and Baker, R. J. (2011). Evaluation of fecal DNA preservation techniques and effects of sample age and diet on genotyping success. Journal of Wildlife Management 75, 1616–1624.
Evaluation of fecal DNA preservation techniques and effects of sample age and diet on genotyping success.Crossref | GoogleScholarGoogle Scholar |

Pavey, C. R., Burwell, C. J., and Nano, C. E. M. (2010). Foraging ecology and habitat use of Slater’s skink (Egernia slateri): an endangered Australian desert lizard. Journal of Herpetology 44, 563–571.
Foraging ecology and habitat use of Slater’s skink (Egernia slateri): an endangered Australian desert lizard.Crossref | GoogleScholarGoogle Scholar |

Piggott, M. P. (2004). Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA. Wildlife Research 31, 485–493.
Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVKrurnJ&md5=d76bf527e91a8dff36c2d807bf24cfcfCAS |

Piggott, M. P., and Taylor, A. C. (2003). Extensive evaluation of faecal preservation and DNA extraction methods in Australian native and introduced species. Australian Journal of Zoology 51, 341–355.
Extensive evaluation of faecal preservation and DNA extraction methods in Australian native and introduced species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovVWqtLo%3D&md5=dfc216a3bfbe920dd539e63d7162165eCAS |

Renan, S., Speyer, E., Shahar, N., Gueta, T., Templeton, A. R., and Bar-David, S. (2012). A factorial design experiment as a pilot study for noninvasive genetic sampling. Molecular Ecology Resources 12, 1040–1047.
A factorial design experiment as a pilot study for noninvasive genetic sampling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFWjurfF&md5=d29e8e1fca051ef8900c95cb2aacc278CAS | 22883720PubMed |

Roeder, A. D., Archer, F. I., Poinar, H. N., and Morin, P. A. (2004). A novel method for collection and preservation of faeces for genetic studies. Molecular Ecology 4, 761–764.
A novel method for collection and preservation of faeces for genetic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGgsA%3D%3D&md5=5704ccccf51a97f4618d76e403897da7CAS |

Smith, A. L., Fenner, A. L., Bull, C. M., and Gardner, M. G. (2009). Genotypes and nematode infestations in an endangered lizard, Tiliqua adelaidensis. Applied Herpetology 6, 300–305.
Genotypes and nematode infestations in an endangered lizard, Tiliqua adelaidensis.Crossref | GoogleScholarGoogle Scholar |

Solberg, K. H., Bellemain, E., Drageset, O.-M., Taberlet, P., and Swenson, J. E. (2006). An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size. Biological Conservation 128, 158–168.
An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size.Crossref | GoogleScholarGoogle Scholar |

Stenglein, J. L., Waits, L. P., Ausband, D. E., Zager, P., and Mack, C. M. (2011). Estimating gray wolf pack size and family relationships using noninvasive genetic sampling at rendevous sites. Journal of Mammalogy 92, 784–795.
Estimating gray wolf pack size and family relationships using noninvasive genetic sampling at rendevous sites.Crossref | GoogleScholarGoogle Scholar |

Taberlet, P., and Luikart, G. (1999). Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society 68, 41–55.
Non-invasive genetic sampling and individual identification.Crossref | GoogleScholarGoogle Scholar |

Taberlet, P., Griffin, S., Goossens, B., Questiau, S., Manceau, V., Escaravage, N., Waits, L. P., and Bouvet, J. (1996). Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research 24, 3189–3194.
Reliable genotyping of samples with very low DNA quantities using PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslyrtLs%3D&md5=46c707748e04f891116aa675a51dcdffCAS | 8774899PubMed |

Taberlet, P., Waits, L. P., and Luikart, G. (1999). Noninvasive genetic sampling: look before you leap. Trends in Ecology & Evolution 14, 323–327.
Noninvasive genetic sampling: look before you leap.Crossref | GoogleScholarGoogle Scholar |

Turner, F. B., and Medica, P. A. (1982). The distribution and abundance of the flat-tailed horned lizard (Phrynosoma mcallii). Copeia , 815–823.
The distribution and abundance of the flat-tailed horned lizard (Phrynosoma mcallii).Crossref | GoogleScholarGoogle Scholar |

Valiere, N. (2002). GIMLET: a computer program for analysing genetic individual identification data. Molecular Ecology Notes 2, 377–379.
| 1:CAS:528:DC%2BD38XnvVWhsLo%3D&md5=6063232e857b3d41f17c03148bba7995CAS |

Valiere, N., Bonenfant, C., Toigo, C., Luikart, G., Gaillard, J.-M., and Klein, F. (2007). Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer. Conservation Genetics 8, 69–78.
Importance of a pilot study for non-invasive genetic sampling: genotyping errors and population size estimation in red deer.Crossref | GoogleScholarGoogle Scholar |

Vynne, C., Baker, M. R., Breuer, Z. K., and Wasser, S. K. (2012). Factors influencing degradation of DNA and hormones in maned wolf scat. Animal Conservation 15, 184–194.
Factors influencing degradation of DNA and hormones in maned wolf scat.Crossref | GoogleScholarGoogle Scholar |

Waits, L. P., and Paetkau, D. (2005). Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. Journal of Wildlife Management 69, 1419–1433.
Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection.Crossref | GoogleScholarGoogle Scholar |

Watts, H. E., Scribner, K. T., Garcia, H. A., and Holekamp, K. E. (2011). Genetic diversity and structure in two spotted hyena populations reflects social organization and male dispersal. Journal of Zoology 285, 281–291.
Genetic diversity and structure in two spotted hyena populations reflects social organization and male dispersal.Crossref | GoogleScholarGoogle Scholar |

Wehausen, J. D., Ramey, R. R., and Epps, C. W. (2004). Experiments in DNA extraction and PCR amplification from bighorn sheet feces: the importance of DNA extraction method. The Journal of Heredity 95, 503–509.
Experiments in DNA extraction and PCR amplification from bighorn sheet feces: the importance of DNA extraction method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlWlsrg%3D&md5=993341a7f4a87c59c4851f92d91ad375CAS | 15475396PubMed |

Wilgers, D. J., and Horne, E. A. (2009). Discrimination of chemical stimuli in conspecific fecal pellets by a visually adept iguanid lizard, Crotaphytus collaris. Journal of Ethology 27, 157–163.
Discrimination of chemical stimuli in conspecific fecal pellets by a visually adept iguanid lizard, Crotaphytus collaris.Crossref | GoogleScholarGoogle Scholar |