Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Assessment of temporal genetic variability of two epibenthic amphipod species in an eastern Australian estuarine environment and their suitability as biological monitors

Pann Pann Chung A B , Ida Chu A and J. William O. Ballard A
+ Author Affiliations
- Author Affiliations

A School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding author. Email: pann.chung@gmail.com

Australian Journal of Zoology 62(3) 206-215 https://doi.org/10.1071/ZO13104
Submitted: 4 December 2013  Accepted: 8 May 2014   Published: 10 June 2014

Abstract

Population studies often assume temporally stable and consistent patterns of genetic variability. Violations of this assumption can lead to misrepresentation of the amount and patterns of genetic variability in natural populations, which can be problematic in basic research and environmental monitoring studies that are designed to detect environmental perturbation. We collected two endemic species of amphipods, Melita plumulosa and Melita matilda, in a major eastern Australian waterway between November 2009 and October 2011, and assessed genetic variation at the mitochondrial cytochrome c oxidase subunit I locus. Overall, M. plumulosa was found to be more genetically variable than M. matilda. No distinct temporal trends in levels and patterns of genetic variation were identified in either species. These findings, combined with the published results demonstrating that M. plumulosa has greater sensitivity to a range of sediment-bound metals and organic contaminants, suggests it to be an informative species for environmental monitoring purposes.

Additional keywords: crustacean, cytochrome c oxidase subunit I, environmental monitoring, genetic variation, Melita matilda, Melita plumulosa.


References

Abele, D., Philipp, E., Gonzalez, P. M., and Puntarulo, S. (2007). Marine invertebrate mitochondria and oxidative stress. Frontiers in Bioscience 12, 933–946.
Marine invertebrate mitochondria and oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1WgsLbM&md5=de6e3caf63c338b1661d4e5939a6e6c9CAS |

Akashi, H., and Eyre-Walker, A. (1998). Translational selection and molecular evolution. Current Opinion in Genetics & Development 8, 688–693.
Translational selection and molecular evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1yitA%3D%3D&md5=a5cb9a4d99ff92d4e132d19bfb6cfe50CAS |

Alden, R. W., Weisberg, S. B., Ranasinghe, J. A., and Dauer, D. M. (1997). Optimizing temporal sampling strategies for benthic environmental monitoring programs. Marine Pollution Bulletin 34, 913–922.
Optimizing temporal sampling strategies for benthic environmental monitoring programs.Crossref | GoogleScholarGoogle Scholar |

Ballard, J. W. O., Chernoff, B., and James, A. C. (2002). Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology or behavior in Drosophila simulans. Evolution 56, 527–545.
Divergence of mitochondrial DNA is not corroborated by nuclear DNA, morphology or behavior in Drosophila simulans.Crossref | GoogleScholarGoogle Scholar |

Barcia, A. R., López, G. E., Hernández, D., and García-Machado, E. (2005). Temporal variation of the population structure and genetic diversity of Farfantepenaeus notialis assessed by allozyme loci. Molecular Ecology 14, 2933–2942.
Temporal variation of the population structure and genetic diversity of Farfantepenaeus notialis assessed by allozyme loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGltLnJ&md5=b75e6a2f9b4b5363c16be0df8e13cfc7CAS |

Belfiore, N. M., and Anderson, S. L. (2001). Effects of contaminants on genetic patterns in aquatic organisms: a review. Mutation Research 489, 97–122.
Effects of contaminants on genetic patterns in aquatic organisms: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovF2htbs%3D&md5=68def5dd0c1842fbbcb27ff44c50497dCAS | 11741031PubMed |

Birch, G. F. (2000). Marine pollution in Australia, with special emphasis on central New South Wales estuaries and adjacent continental margin. International Journal of Environment and Pollution 13, 573–607.
Marine pollution in Australia, with special emphasis on central New South Wales estuaries and adjacent continental margin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1WrsLo%3D&md5=acb580d01fc9e4bb4d45bc2eea9a6140CAS |

Blakeslee, A. M. H., McKenzie, C. H., Darling, J. A., Byers, J. E., Pringle, J. M., and Roman, J. (2010). A hitchhiker’s guide to the Maritimes: anthropogenic transport facilitates long-distance dispersal of an invasive marine crab to Newfoundland. Diversity & Distributions 16, 879–891.
A hitchhiker’s guide to the Maritimes: anthropogenic transport facilitates long-distance dispersal of an invasive marine crab to Newfoundland.Crossref | GoogleScholarGoogle Scholar |

Carew, M. E., Pettigrove, V., Cox, R. L., and Hoffmann, A. A. (2007). The response of Chironomidae to sediment pollution and other environmental characteristics in urban wetlands. Freshwater Biology 52, 2444–2462.
The response of Chironomidae to sediment pollution and other environmental characteristics in urban wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXls1SmtQ%3D%3D&md5=6c3c7e5fc4a29a0c90881ca969a73f87CAS |

Chariton, A. A., Roach, A. C., Simpson, S. L., and Batley, G. E. (2010). Influence of the choice of physical and chemistry variables on interpreting patterns of sediment contaminants and their relationships with estuarine macrobenthic communities. Marine and Freshwater Research 61, 1109–1122.
Influence of the choice of physical and chemistry variables on interpreting patterns of sediment contaminants and their relationships with estuarine macrobenthic communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1yjsrjJ&md5=5621f2fbb4eccf8ef95e0d91dd471d5cCAS |

Chung, P. P., Hyne, R. V., Mann, R. M., and Ballard, J. W. O. (2008). Genetic and life-history trait variation of the amphipod Melita plumulosa from polluted and unpolluted waterways in eastern Australia. The Science of the Total Environment 403, 222–229.
Genetic and life-history trait variation of the amphipod Melita plumulosa from polluted and unpolluted waterways in eastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlemsL0%3D&md5=f8b90ad19a89620f5ab5eeabc666be43CAS | 18586304PubMed |

Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=b524c7fe7b62c47bd07eb7088516f4dcCAS | 11050560PubMed |

Coghlan, S. M., and Ringler, N. H. (2005). Survival and bioenergetic responses of juvenile Atlantic salmon along a perturbation gradient in a natural stream. Ecology of Freshwater Fish 14, 111–124.
Survival and bioenergetic responses of juvenile Atlantic salmon along a perturbation gradient in a natural stream.Crossref | GoogleScholarGoogle Scholar |

Cohen, S. (2002). Strong positive selection and habitat-specific amino acid substitution patterns in Mhc from an estuarine fish under intense pollution stress. Molecular Biology and Evolution 19, 1870–1880.
Strong positive selection and habitat-specific amino acid substitution patterns in Mhc from an estuarine fish under intense pollution stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFOntLY%3D&md5=81eb05381f85bb489834af561745c009CAS | 12411596PubMed |

Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gmu7w%3D&md5=e6fc0ee5aa3d4494098bd39ca811a3f1CAS |

Darling, J. A., Kuenzi, A., and Reitzel, A. M. (2009). Human-mediated transport determines the non-native distribution of the anemone Nematostella vectensis, a dispersal-limited estuarine invertebrate. Marine Ecology Progress Series 380, 137–146.
Human-mediated transport determines the non-native distribution of the anemone Nematostella vectensis, a dispersal-limited estuarine invertebrate.Crossref | GoogleScholarGoogle Scholar |

Dauvin, J.-C., and Ruellet, T. (2009). The estuarine quality paradox: is it possible to define an ecological quality status for specified modified and naturally stressed estuarine ecosystems? Marine Pollution Bulletin 59, 38–47.
The estuarine quality paradox: is it possible to define an ecological quality status for specified modified and naturally stressed estuarine ecosystems?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitFSgs7s%3D&md5=ba4db9fc829f0a29c4b0478a61fe8b4cCAS | 19084874PubMed |

Dean, M. D., and Ballard, J. W. O. (2001). Factors affecting mitochondrial DNA quality from museum preserved Drosophila simulans. Entomologia Experimentalis et Applicata 98, 279–283.
Factors affecting mitochondrial DNA quality from museum preserved Drosophila simulans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtFyitrk%3D&md5=8efc8257a131d1572778d1d86b7cdb87CAS |

Fairweather, P. G. (1999). Determining the ‘health’ of estuaries: priorities for ecological research. Australian Journal of Ecology 24, 441–451.
Determining the ‘health’ of estuaries: priorities for ecological research.Crossref | GoogleScholarGoogle Scholar |

Felsenstein, J. (2006). Accuracy of coalescent likelihood estimates: do we need more sites, more sequences, or more loci? Molecular Biology and Evolution 23, 691–700.
Accuracy of coalescent likelihood estimates: do we need more sites, more sequences, or more loci?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVags7s%3D&md5=f1d0d98e3dc2ce46c15277eac6aedfadCAS | 16364968PubMed |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=64874205a2734610b194abfa9da78e6dCAS | 7881515PubMed |

Fu, Y.-X., and Li, W.-H. (1993). Statistical tests of neutrality of mutations. Genetics 133, 693–709.
| 1:STN:280:DyaK3s3gt1Crsw%3D%3D&md5=8ea20dc612e86c2270d125b84a6a5964CAS | 8454210PubMed |

Gale, S. A., King, C. K., and Hyne, R. V. (2006). Chronic sublethal sediment toxicity testing using the estuarine amphipod, Melita plumulosa (Zeidler): evaluation using metal-spiked and field-contaminated sediments. Environmental Toxicology and Chemistry 25, 1887–1898.
Chronic sublethal sediment toxicity testing using the estuarine amphipod, Melita plumulosa (Zeidler): evaluation using metal-spiked and field-contaminated sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtFertrc%3D&md5=14ad4a41fdbce9e8aad0776d6130f86fCAS | 16833152PubMed |

Geoscience Australia (2013). Applying geoscience to Australia’s most important challenges. Available from: http://www.ga.gov.au/index.html [accessed 12 June 2013].

Guengerich, F. P. (2008). Cytochrome P450 and chemical toxicology. Chemical Research in Toxicology 21, 70–83.
Cytochrome P450 and chemical toxicology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlynurbF&md5=bb9e9266d117d383b571c3626ecd4bb6CAS | 18052394PubMed |

Hebert, P. D. N., Ratnasingham, S., and de Waard, J. R. (2003). Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species. Proceedings of the Royal Society of London B 270, S96–S99.
Barcoding animal life: cytochrome c oxidase subunit I divergences among closely related species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXns1Smsbo%3D&md5=27b1a414d22f1bc5e6743bc70ce58904CAS |

Hoffmann, A. A., and Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature 470, 479–485.
Climate change and evolutionary adaptation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVags7o%3D&md5=e9ee0ca0db96e3a7a8fc775eee84ad32CAS | 21350480PubMed |

Hyne, R. V., Gale, S. A., and King, C. K. (2005). Laboratory culture and life-cycle experiments with the benthic amphipod Melita plumulosa (Zeidler). Environmental Toxicology and Chemistry 24, 2065–2073.
Laboratory culture and life-cycle experiments with the benthic amphipod Melita plumulosa (Zeidler).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXntVahsbc%3D&md5=739d261c41fbc072161bde8e8ea1bdd1CAS | 16152980PubMed |

Jimenez, B. D., Oikari, A., Adams, S. M., Hinton, D. E., and McCarthy, J. F. (1990). Hepatic enzymes as biomarkers: interpreting the effects of environmental, physiological and toxicological variables. In ‘Biomarkers of Environmental Contamination’. (Eds J. F. McCarthy, and L. R. Shugart.) pp. 123–142. (Lewis Publishers: Boca Raton, FL.)

Kendall, M. G. (1970). ‘Rank Correlation Methods.’ 3rd edn. (Griffin: London.)

King, C. K., Gale, S. A., Hyne, R. V., Stauber, J. L., Simpson, S. L., and Hickey, C. W. (2006a). Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments. Chemosphere 63, 1466–1476.
Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XkslSns7s%3D&md5=dfe1bb4036264d1321ce7101c4bc6f69CAS | 16289287PubMed |

King, C. K., Gale, S. A., and Stauber, J. L. (2006b). Acute toxicity and bioaccumulation of aqueous and sediment-bound metals in the estuarine amphipod Melita plumulosa. Environmental Toxicology 21, 489–504.
Acute toxicity and bioaccumulation of aqueous and sediment-bound metals in the estuarine amphipod Melita plumulosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCjsbnJ&md5=727fd278ad551be894e868c578a0298fCAS | 16944510PubMed |

KTL Australia (2011). Australian Ports. Available from: http://www.ktlaustralia.com/index.php?/General-Information/australian-ports.html [accessed 02 December 2011].

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=8f652be77a972bc7a2224b8269fec45cCAS | 19346325PubMed |

Lowry, J. K., Berents, P. B., and Springthorpe, R. T. (2000). Australian Amphipoda: Melitidae. In ‘Crustacea.net’. Available from: http://www.crustacea.net/crustace/amphipoda/melitidae/index.htm [accessed 1 February 2013].

Lundy, C. J., Rico, C., and Hewitt, G. M. (2000). Temporal and spatial genetic variation in spawning grounds of European hake (Merluccius merluccius) in the Bay of Biscay. Molecular Ecology 9, 2067–2079.
Temporal and spatial genetic variation in spawning grounds of European hake (Merluccius merluccius) in the Bay of Biscay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Oksw%3D%3D&md5=8107fe310f85a55492d02b4912e05eb5CAS | 11123619PubMed |

Mann, R. M., Hyne, R. V., Spadaro, D. A., and Simpson, S. L. (2009). Development and application of a rapid amphipod reproduction test for sediment quality assessment. Environmental Toxicology and Chemistry 28, 1244–1254.
Development and application of a rapid amphipod reproduction test for sediment quality assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmsFWhtLs%3D&md5=cc81700f21a30387dd413ea71c7b8944CAS | 19166262PubMed |

Mann, R. M., Hyne, R. V., and Ascheri, L. M. E. (2011). Foraging, feeding, and reproduction on silica substrate: increased waterborne zinc toxicity to the estuarine epibenthic amphipod Melita plumulosa. Environmental Toxicology and Chemistry 30, 1649–1658.
Foraging, feeding, and reproduction on silica substrate: increased waterborne zinc toxicity to the estuarine epibenthic amphipod Melita plumulosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFOgtrc%3D&md5=86f3228cb31b06396aeb057d78712d02CAS | 21472772PubMed |

Markert, J. A., Champlin, D. M., Gutjahr-Gobell, R., Grear, J. S., Kuhn, A., McGreevy, T. J., Roth, A., Bagley, M. J., and Nacci, D. E. (2010). Population genetic diversity and fitness in multiple environments. BMC Evolutionary Biology 10, 205.
| 20609254PubMed |

Matson, C. W., Lambert, M. M., McDonald, T. J., Autenrieth, R. L., Donnelly, K. C., Islamzadeh, A., Politov, D. I., and Bickham, J. W. (2006). Evolutionary toxicology: population-level effects of chronic contaminant exposure on the marsh frogs (Rana ridibunda) of Azerbaijan. Environmental Health Perspectives 114, 547–552.
Evolutionary toxicology: population-level effects of chronic contaminant exposure on the marsh frogs (Rana ridibunda) of Azerbaijan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktlegu7c%3D&md5=24c1de7b5e54c860aafe43ab79fb96cbCAS | 16581544PubMed |

Murphy, N. P., Adams, M., Guzik, M. T., and Austin, A. D. (2013). Extraordinary micro-endemism in Australian desert spring amphipods. Molecular Phylogenetics and Evolution 66, 645–653.
Extraordinary micro-endemism in Australian desert spring amphipods.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s7isVGitw%3D%3D&md5=8976328a129fd85563f2aaf98e828324CAS | 23142695PubMed |

Nei, M., and Li, W. H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 76, 5269–5273.
Mathematical model for studying genetic variation in terms of restriction endonucleases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXitVWn&md5=951c2995dc8aecb9acdfe647c6b99021CAS | 291943PubMed |

Palstra, F. P., and Ruzzante, D. E. (2010). A temporal perspective on population structure and gene flow in Atlantic salmon (Salmo salar) in Newfoundland, Canada. Canadian Journal of Fisheries and Aquatic Sciences 67, 225–242.
A temporal perspective on population structure and gene flow in Atlantic salmon (Salmo salar) in Newfoundland, Canada.Crossref | GoogleScholarGoogle Scholar |

Pauls, S. U., Nowak, C., Bálint, M., and Pfenninger, M. (2013). The impact of global climate change on genetic diversity within populations and species. Molecular Ecology 22, 925–946.
The impact of global climate change on genetic diversity within populations and species.Crossref | GoogleScholarGoogle Scholar | 23279006PubMed |

Rinner, B. P., Matson, C. W., Islamzadeh, A., McDonald, T. J., Donnelly, K. C., and Bickham, J. W. (2011). Evolutionary toxicology: contaminant-induced genetic mutations in mosquitofish from Sumgayit, Azerbaijan. Ecotoxicology 20, 365–376.
Evolutionary toxicology: contaminant-induced genetic mutations in mosquitofish from Sumgayit, Azerbaijan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhvVWqurg%3D&md5=531c5ae0acb9cda80e5f1270d8199c6dCAS | 21312027PubMed |

Roelofs, D., Janssens, T. K. S., Timmermans, M. J. T. N., Nota, B., Mariën, J., Bochdanovits, Z., Ylstra, B., and Van Straalen, N. M. (2009). Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta. Molecular Ecology 18, 3227–3239.
Adaptive differences in gene expression associated with heavy metal tolerance in the soil arthropod Orchesella cincta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFaisbrN&md5=f99ed874cb372068a05bb1ce542166fcCAS | 19566677PubMed |

Simpson, S. L., and Spadaro, D. A. (2011). Performance and sensitivity of rapid sublethal sediment toxicity tests with the amphipod Melita plumulosa and copepod Nitocra spinipes. Environmental Toxicology and Chemistry 30, 2326–2334.
Performance and sensitivity of rapid sublethal sediment toxicity tests with the amphipod Melita plumulosa and copepod Nitocra spinipes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2hs7fF&md5=6ce27672efc75ffde5741b18897c3f63CAS | 21805497PubMed |

Spadaro, D. A., Micevska, T., and Simpson, S. L. (2008). Effect of nutrition on toxicity of contaminants to the epibenthic amphipod Melita plumulosa. Archives of Environmental Contamination and Toxicology 55, 593–602.
Effect of nutrition on toxicity of contaminants to the epibenthic amphipod Melita plumulosa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFOgsL7F&md5=09c1ebcad65108cdddd0df619bffa8caCAS | 18340476PubMed |

Sweeney, B. W., Battle, J. M., Jackson, J. K., and Dapkey, T. (2011). Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality? Journal of the North American Benthological Society 30, 195–216.
Can DNA barcodes of stream macroinvertebrates improve descriptions of community structure and water quality?Crossref | GoogleScholarGoogle Scholar |

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
| 1:CAS:528:DyaK3cXhslentA%3D%3D&md5=49669c67a5ff0cb37882e6937feec8b2CAS | 2513255PubMed |

Templeton, A. R., Crandall, K. A., and Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633.
| 1:CAS:528:DyaK3sXhslSrsQ%3D%3D&md5=66386a9bee3d7a95d2323d26aa17cfe5CAS | 1385266PubMed |

Ungherese, G., Mengoni, A., Somigli, S., Baroni, D., Focardi, S., and Ugolini, A. (2010). Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda). Environmental Pollution 158, 1638–1643.
Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmt1Kms7Y%3D&md5=85a01dced4fcf768c780a4c180103605CAS | 20034716PubMed |

Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7, 256–276.
On the number of segregating sites in genetical models without recombination.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M7pvFSquw%3D%3D&md5=83dd51329bcc881d3f203bf57571f91fCAS | 1145509PubMed |