Development of microsatellite markers using 454 sequencing for the rare socially parasitic hoverfly, Microdon mutabilis
Juergen von Zum Hof A , Karsten Schönrogge B , James M. Cook C and Michael G. Gardner A DA School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
B Centre for Ecology and Hydrology, CEH Wallingford, Maclean Building, Benson Lane, Wallingford, OX10 8BB, UK.
C School of Biological Sciences, University of Reading, Reading, Berkshire, RG6 6BX, UK.
D Corresponding author. Email: michael.gardner@flinders.edu.au
Australian Journal of Zoology 60(2) 108-110 https://doi.org/10.1071/ZO12042
Submitted: 18 April 2012 Accepted: 25 July 2012 Published: 20 August 2012
Abstract
To date there have been only limited fine-scale investigations into the molecular ecology of the European hoverfly, Microdon mutabilis, due to the paucity of available polymorphic markers. We describe the development of primers amplifying five novel microsatellite loci using next-generation sequencing (454) and three previously undescribed M. mutabilis microsatellite loci using enrichments. In hoverflies from a population in Ireland, the number of alleles per locus ranged from 2 to 16, and the observed heterozygosity ranged between 0.26 and 0.97
Additional keywords: genetic population structure, local adaptation, PCR, social parasite
References
Elmes, G. W., Barr, B., Thomas, J. A., and Clarke, R. T. (1999). Extreme host specificity by Microdon mutabilis (Diptera: Syrphidae), a social parasite of ants. Proceedings of the Royal Society of London. Series B, Biological Sciences 266, 447–453.| Extreme host specificity by Microdon mutabilis (Diptera: Syrphidae), a social parasite of ants.Crossref | GoogleScholarGoogle Scholar |
Gardner, M. G., Cooper, S. J. B., Bull, C. M., and Grant, W. N. (1999). Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure. The Journal of Heredity 90, 301–304.
| Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1yktLw%3D&md5=0bef79de309d6f5f547792d9d68ef3a9CAS |
Gardner, M. G., Schonrogge, K., Elmes, G. W., and Thomas, J. A. (2007). Increased genetic diversity as a defence against parasites is undermined by social parasites: Microdon mutabilis hoverflies infesting Formica lemani ant colonies. Proceedings. Biological Sciences 274, 103–110.
| Increased genetic diversity as a defence against parasites is undermined by social parasites: Microdon mutabilis hoverflies infesting Formica lemani ant colonies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2ksb0%3D&md5=d743c2a9cc1ef4e11a7a135873661269CAS |
Gardner, M. G., Fitch, A. J., Bertozzi, T., and Lowe, A. J. (2011). Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources 11, 1093–1101.
| Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development.Crossref | GoogleScholarGoogle Scholar |
Hale, M. L., Bevan, R., and Wolff, K. (2001). New polymorphic microsatellite markers for the red squirrel (Sciurus vulgaris) and their applicability to the grey squirrel (S. carolinensis). Molecular Ecology Notes 1, 47–49.
| New polymorphic microsatellite markers for the red squirrel (Sciurus vulgaris) and their applicability to the grey squirrel (S. carolinensis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslaksLw%3D&md5=db5869f5c6619cd96aafb1a8dfa91a84CAS |
Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75, 800–802.
| A sharper Bonferroni procedure for multiple tests of significance.Crossref | GoogleScholarGoogle Scholar |
Kalinowski, S. T., Taper, M. L., and Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099–1106.
| Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.Crossref | GoogleScholarGoogle Scholar |
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007). ClustalW and ClustalX version 2. Bioinformatics 23, 2947–2948.
| ClustalW and ClustalX version 2.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqsL%2FM&md5=75acf63bd08338cf2f58ffed14e6c12aCAS |
Méglecz, E., Costedoat, C., Dubut, V., Gilles, A., Malausa, T., Pech, N., and Martin, J.-F. (2010). QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26, 403–404.
| QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects.Crossref | GoogleScholarGoogle Scholar |
Raymond, M., and Rousset, F. (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.
Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology (Clifton, N.J.) 132, 365–386.
| 1:CAS:528:DyaK1MXmslKqsbo%3D&md5=df08cc40598b3172f809b35d9fffea2cCAS |
Schönrogge, K., Gardner, M. G., Elmes, G. W., Napper, E. K. V., Simcox, D. J., Wardlaw, J. C., Breen, J., Barr, B., Knapp, J. J., Pickett, J. A., and Thomas, J. A. (2006). Host propagation permits extreme local adaptation in a social parasite of ants. Ecology Letters 9, 1032–1040.
| Host propagation permits extreme local adaptation in a social parasite of ants.Crossref | GoogleScholarGoogle Scholar |
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
| MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=d683914b77be7d0fbf26504934fe9c41CAS |