The nature of nutrition: a unifying framework
Stephen J. Simpson A C and David Raubenheimer B CA School of Biological Sciences & The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.
B Institute of Natural Sciences, Massey University, Albany, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand.
C Corresponding authors. Email: stephen.simpson@sydney.edu.au; d.raubenheimer@massey.ac.nz
Australian Journal of Zoology 59(6) 350-368 https://doi.org/10.1071/ZO11068
Submitted: 31 August 2011 Accepted: 18 April 2012 Published: 9 May 2012
Abstract
We present a graphical approach, which we believe can help to integrate nutrition into the broader biological sciences, and introduce generality into the applied nutritional sciences. This ‘Geometric Framework’ takes account of the fact that animals need multiple nutrients in changing amounts and balance, and that nutrients come packaged in foods that are often hard to find, dangerous to subdue and costly to process. We then show how the Geometric Framework has been used to understand the links between nutrition and relevant aspects of the biology of individual animals. These aspects include the physiological mechanisms that direct the nutritional interactions of the animal with its environment, and the fitness consequences of these interactions. Having considered the implications of diet for individuals, we show that these effects can translate into the collective behaviour of groups and societies, and in turn ramify throughout food webs to influence the structure of ecosystems.
Additional keywords: ageing, cannibalism, conservation, Geometric Framework.
References
Abisgold, J. D., Simpson, S. J., and Douglas, A. E. (1994). Nutrient regulation in the pea aphid Acyrthosiphon pisum: application of a novel geometric framework to sugar and amino acid consumption. Physiological Entomology 19, 95–102.| Nutrient regulation in the pea aphid Acyrthosiphon pisum: application of a novel geometric framework to sugar and amino acid consumption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXlslyntrc%3D&md5=b69967a2b209a9eb1ec88bebe89ae629CAS |
Altmann, J., Schoeller, D., Altmann, S. A., Muruthi, P., and Sapolsky, R. M. (1993). Body size and fatness of free-living baboons reflect food availability and activity levels. American Journal of Primatology 30, 149–161.
| Body size and fatness of free-living baboons reflect food availability and activity levels.Crossref | GoogleScholarGoogle Scholar |
Andrew, R., Wallis, I. R., Harwood, C. E., Henson, M., and Foley, W. J. (2007). Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores. Oecologia 153, 891–901.
| Heritable variation in the foliar secondary metabolite sideroxylonal in Eucalyptus confers cross-resistance to herbivores.Crossref | GoogleScholarGoogle Scholar |
Angilletta, M. J. (2009). ‘Thermal Adaptation: a Theoretical and Empirical Synthesis.’ (Oxford University Press: Oxford.)
Archer, C. R., Royle, N., South, S., Selman, C., and Hunt, J. (2009). Nutritional geometry provides food for thought. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 64A, 956–959.
| Nutritional geometry provides food for thought.Crossref | GoogleScholarGoogle Scholar |
Aubert, A., Goodall, G., and Dantzer, R. (1995). Compared effects of cold ambient temperature and cytokines on macronutrient intake in rats. Physiology & Behavior 57, 869–873.
| Compared effects of cold ambient temperature and cytokines on macronutrient intake in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXltVahuro%3D&md5=e2cd488db4b1308a8376c42554f9c2bfCAS |
Barker, D. J. P. (1998), ‘Mothers, Babies and Health in Later Life.’ 2nd edn. (Churchill Livingstone: London.)
Barton Browne, L. (1995). Ontogenetic changes in feeding behavior. In ‘Regulatory Mechanisms in Insect Feeding’. (Eds R. F. Chapman and G. de Boer.) pp. 307–342. (Chapman and Hall: New York.)
Bazazi, S., Buhl, J., Hale, J. J., Anstey, M. L., Sword, G. A., Simpson, S. J., and Couzin, I. D. (2008). Collective motion and cannibalism in locust migratory bands. Current Biology 18, 735–739.
| Collective motion and cannibalism in locust migratory bands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtVaktrY%3D&md5=2d2245e0362d08157cf067514aba2689CAS |
Bazazi, S., Romanczuk, P., Thomas, S., Schimansky-Geier, L., Hale, J. J., Miller, G. A., Sword, G. A., Simpson, S. J., and Couzin, I. D. (2011). Nutritional state and collective motion: from individuals to mass migration. Proceedings. Biological Sciences 278, 356–363.
| Nutritional state and collective motion: from individuals to mass migration.Crossref | GoogleScholarGoogle Scholar |
Behmer, S. T. (2009). Insect herbivore nutrient regulation. Annual Review of Entomology 54, 165–187.
| Insect herbivore nutrient regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsFelug%3D%3D&md5=f8f1b85e7c4bcc3e784dbab5605cd387CAS |
Behmer, S. T., Simpson, S. J., and Raubenheimer, D. (2002). Herbivore foraging strategies in chemically heterogeneous environments: allelochemical–nutrient interactions. Ecology 83, 2489–2501.
| Herbivore foraging strategies in chemically heterogeneous environments: allelochemical–nutrient interactions.Crossref | GoogleScholarGoogle Scholar |
Berenbaum, M. R. (1995). Turnabout is fair play: secondary roles for primary compounds. Journal of Chemical Ecology 21, 925–940.
| Turnabout is fair play: secondary roles for primary compounds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvV2jsLY%3D&md5=6717209c92dc711ad2936d4d856241dcCAS |
Bernays, E. A. (1993). Food aversion learning. In ‘Insect Learning’. (Eds A. C. Lewis and D. Papaj.) pp. 1–17. (Chapman and Hall: New York.)
Boersma, M., and Elser, J. J. (2006). Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87, 1325–1330.
| Too much of a good thing: on stoichiometrically balanced diets and maximal growth.Crossref | GoogleScholarGoogle Scholar |
Booth, D. A., and Thibault, L. (2000). Macronutrient-specific hungers and satieties and their neural bases, learnt from pre- and postingestinal effects of eating particular foodstuffs. In ‘Neural and Metabolic Control of Macronutrient Intake’. (Eds H.-R. Berthoud and R. J. Seeley.) pp. 61–91. (CRC Press: Boca Raton, FL.)
Burke, C. J., and Waddell, S. (2011). Remembering nutrient quality of sugar in Drosophila. Current Biology 21, 746–750.
| Remembering nutrient quality of sugar in Drosophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVOnsbk%3D&md5=9ccd3d3b69f9f5b22fcc0f07925b9872CAS |
Calabrese, E. J. (2005). Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environmental Pollution 138, 379–412.
| Paradigm lost, paradigm found: the re-emergence of hormesis as a fundamental dose response model in the toxicological sciences.Crossref | GoogleScholarGoogle Scholar |
Calabrese, E. J., and Baldwin, L. A. (2003). Toxicology rethinks its central belief – hormesis demands a reappraisal of the way risks are assessed. Nature 421, 691–692.
| Toxicology rethinks its central belief – hormesis demands a reappraisal of the way risks are assessed.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsV2rs78%3D&md5=1f159b6930fe186606a8e1c2e5c7474aCAS |
Calabrese, E. J., Baldwin, L. A., and Holland, C. D. (1999). Hormesis: a highly generalizable and reproducible phenomenon with important implications for risk assessment. Risk Analysis 19, 261–281.
| Hormesis: a highly generalizable and reproducible phenomenon with important implications for risk assessment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3ivVajug%3D%3D&md5=78f681e2ecdedd25885bc4f107f9336fCAS |
Carey, J. R., Harshman, L. G., Liedo, P., Müller, H.-G., Wang, J.-L., and Zhang, Z. (2008). Longevity–fertility trade-offs in the tephritid fruit fly, Anastrepha ludens, across dietary-restriction gradients. Aging Cell 7, 470–477.
| Longevity–fertility trade-offs in the tephritid fruit fly, Anastrepha ludens, across dietary-restriction gradients.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVOht7g%3D&md5=742388f2469ad427293aec7faf40c4c1CAS |
Carleton, A., Accolla, R., and Simon, S. A. (2010). Coding in the mammalian gustatory system. Trends in Neurosciences 33, 326–334.
| Coding in the mammalian gustatory system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXoslWqtbw%3D&md5=cfad13360286d2591547f78a8c42c087CAS |
Cassill, D. L., and Tschinkel, W. R. (1999). Regulation of diet in the fire ant, Solenopsis invicta. Journal of Insect Behavior 12, 307–328.
| Regulation of diet in the fire ant, Solenopsis invicta.Crossref | GoogleScholarGoogle Scholar |
Chambers, P. G., Simpson, S. J., and Raubenheimer, D. (1995). Behavioural mechanisms of nutrient balancing in Locusta migratoria. Animal Behaviour 50, 1513–1523.
| Behavioural mechanisms of nutrient balancing in Locusta migratoria.Crossref | GoogleScholarGoogle Scholar |
Chambers, P. G., Simpson, S. J., and Raubenheimer, D. (1997). The functional significance of switching interval in food mixing by Locusta migratoria. Journal of Insect Physiology 44, 77–85.
| The functional significance of switching interval in food mixing by Locusta migratoria.Crossref | GoogleScholarGoogle Scholar |
Clissold, F. J., Tedder, B. J., Conigrave, A. D., and Simpson, S. J. (2010). The gastrointestinal tract as a nutrient balancing organ. Proceedings. Biological Sciences 277, 1751–1759.
| The gastrointestinal tract as a nutrient balancing organ.Crossref | GoogleScholarGoogle Scholar |
Coggan, N., Clissold, F. J., and Simpson, S. J. (2011). Locusts use dynamic thermoregulatory behaviour to optimise nutritional outcomes. Proceedings. Biological Sciences 278, 2745–2752.
| Locusts use dynamic thermoregulatory behaviour to optimise nutritional outcomes.Crossref | GoogleScholarGoogle Scholar |
Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., Allison, D. B., Cruzen, C., Simmons, H. A., Kemnitz, J. W., and Weindruch, R. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201–204.
| Caloric restriction delays disease onset and mortality in rhesus monkeys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXos1SrtL0%3D&md5=96b5bcc89f8d29bf4bf666c394fb8784CAS |
Cook, S. C., Eubanks, M. D., Gold, R. E., and Behmer, S. T. (2010). Colony-level macronutrient regulation in ants: mechanisms, hoarding and associated costs. Animal Behaviour 79, 429–437.
| Colony-level macronutrient regulation in ants: mechanisms, hoarding and associated costs.Crossref | GoogleScholarGoogle Scholar |
Cota, D., Proulx, K., and Seeley, R. J. (2007). The role of CNS fuel sensing in energy and glucose regulation. Gastroenterology 132, 2158–2168.
| The role of CNS fuel sensing in energy and glucose regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsVyns74%3D&md5=9bdd313eaa44442d6023978793966a8bCAS |
Cotter, S. C., Simpson, S. J., Raubenheimer, D., and Wilson, K. (2011). Macronutrient balance mediates trade-offs between immune function and life history traits. Functional Ecology 25, 186–198.
| Macronutrient balance mediates trade-offs between immune function and life history traits.Crossref | GoogleScholarGoogle Scholar |
Crespi, E. J., and Denver, R. J. (2006). Leptin (ob gene) of the South African clawed frog Xenopus laevis. Proceedings of the National Academy of Sciences of the United States of America 103, 10 092–10 097.
| Leptin (ob gene) of the South African clawed frog Xenopus laevis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmvVaju7c%3D&md5=5e465e7e778ef3434fe0c316d0ba4e9bCAS |
Cypess, A. M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A. B., Kuo, F. C., Palmer, E. L., Tseng, Y.-H., Doria, A., Kolodny, G. M., and Kahn, C. R. (2009). Identification and importance of brown adipose tissue in adult humans. The New England Journal of Medicine 360, 1509–1517.
| Identification and importance of brown adipose tissue in adult humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltlSqsro%3D&md5=130f71af8cb2901b74f6142a35ad4057CAS |
De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., Collini, S., Pieraccinie, G., and Lionetti, P. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America 107, 14 691–14 696.
| Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa.Crossref | GoogleScholarGoogle Scholar |
DeAngelis, D. L., Mulholland, P. J., Palumbo, A. V., Steinmen, A. D., Huston, M. A., and Elwood, J. W. (1989). Nutrient dynamics and food-web stability. Annual Review of Ecology and Systematics 20, 71–95.
| Nutrient dynamics and food-web stability.Crossref | GoogleScholarGoogle Scholar |
Dearing, M. D., Forbey, J. S., McLister, J. D., and Santos, L. (2008). Ambient temperature influences diet selection and physiology of an herbivorous mammal, Neotoma albigula. Physiological and Biochemical Zoology 81, 891–897.
| Ambient temperature influences diet selection and physiology of an herbivorous mammal, Neotoma albigula.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhtlWktQ%3D%3D&md5=f1c03e30f9e74cc6a61e484deac6ea42CAS |
Denno, R. F., and Fagan, W. F. (2003). Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84, 2522–2531.
| Might nitrogen limitation promote omnivory among carnivorous arthropods?Crossref | GoogleScholarGoogle Scholar |
Dethier, V. G. (1976). ‘The Hungry Fly.’ (Princeton University Press: Princeton, NJ.)
Dong, D., Jones, G., and Zhang, S. (2009). Dynamic evolution of bitter taste receptor genes in vertebrates. BMC Evolutionary Biology 9, 1–9.
| Dynamic evolution of bitter taste receptor genes in vertebrates.Crossref | GoogleScholarGoogle Scholar |
Douglas, A. E. (2010). ‘The Symbiotic Habit.’ (Princeton University Press: Princeton, NJ.)
Dukas, R. (2008). Evolutionary biology of insect learning. Annual Review of Entomology 53, 145–160.
| Evolutionary biology of insect learning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12jsrY%3D&md5=be419d74c059b4542d586eb4db8bf246CAS |
Dussutour, A., and Simpson, S. J. (2008). Carbohydrate regulation in relation to colony growth in ants. The Journal of Experimental Biology 211, 2224–2232.
| Carbohydrate regulation in relation to colony growth in ants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOnsbfI&md5=be66b0ac9d8160806b705ab96da99edcCAS |
Dussutour, A., and Simpson, S. J. (2009). Communal nutrition in ants. Current Biology 19, 740–744.
| Communal nutrition in ants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlslWmtrg%3D&md5=12131d02fb5ce20ba585b8f11c75bdaeCAS |
Everitt, A. V., Rattan, S., Le Couteur, D., and de Cabo, R. (Eds) (2010). ‘Calorie Restriction, Aging, and Longevity.’ (Springer: Dordrecht.)
Fagan, W. F., and Denno, R. F. (2004). Stoichiometry of actual vs. potential predator–prey interactions: insights into nitrogen limitation for arthropod predators. Ecology Letters 7, 876–883.
| Stoichiometry of actual vs. potential predator–prey interactions: insights into nitrogen limitation for arthropod predators.Crossref | GoogleScholarGoogle Scholar |
Fanson, B. G., and Taylor, P. W. (2011). Protein: carbohydrate ratios explain lifespan patterns found in Queensland fruit fly on diets varying in yeast : sugar ratios. Age , .
| Protein: carbohydrate ratios explain lifespan patterns found in Queensland fruit fly on diets varying in yeast : sugar ratios.Crossref | GoogleScholarGoogle Scholar |
Fanson, B. G., Weldon, C. W., Pérez-Staples, D., Simpson, S. J., and Taylor, P. W. (2009). Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 8, 514–523.
| Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1KktbfE&md5=af6721488dd51996613852d05a5f5b68CAS |
Felton, A. M., Felton, A., Raubenheimer, D., Simpson, S. J., Foley, W. J., Wood, J. T., Wallis, I. R., and Lindenmayer, D. B. (2009a). Protein content of diets dictates the daily energy intake of a free-ranging primate. Behavioral Ecology 20, 685–690.
| Protein content of diets dictates the daily energy intake of a free-ranging primate.Crossref | GoogleScholarGoogle Scholar |
Felton, A. M., Felton, A., Wood, J. T., Foley, W. J., Raubenheimer, D., Wallis, I. R., and Lindenmayer, D. B. (2009b). Nutritional ecology of Ateles chamek in lowland Bolivia: how macronutrient balancing influences food choices. International Journal of Primatology 30, 675–696.
| Nutritional ecology of Ateles chamek in lowland Bolivia: how macronutrient balancing influences food choices.Crossref | GoogleScholarGoogle Scholar |
Finger, T. E. (1997). Evolution of taste and solitary chemoreceptor cell systems. Brain, Behavior and Evolution 50, 234–243.
| Evolution of taste and solitary chemoreceptor cell systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2svlsF2qtw%3D%3D&md5=6895176f5c913c4ef1476368cab76316CAS |
Flatt, T. (2011). Survival costs of reproduction in Drosophila. Experimental Gerontology 46, 369–375.
| Survival costs of reproduction in Drosophila.Crossref | GoogleScholarGoogle Scholar |
Fujita, M., and Tanimura, T. (2011). Drosophila evaluates and learns the nutritional value of sugars. Current Biology 21, 751–755.
| Drosophila evaluates and learns the nutritional value of sugars.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVOnsbY%3D&md5=c7cf62149acbbe18eacc62e852fc1853CAS |
Galef, B. G., and Laland, K. N. (2005). Social learning in animals: empirical studies and theoretical models. Bioscience 55, 489–499.
| Social learning in animals: empirical studies and theoretical models.Crossref | GoogleScholarGoogle Scholar |
Gluckman, P. D., and Hanson, M. A. (2004). The developmental origins of the metabolic syndrome. Trends in Endocrinology and Metabolism 15, 183–187.
| The developmental origins of the metabolic syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsVegurk%3D&md5=31e7e91707f84e25657a1f67f27ae385CAS |
Gluckman, P. D., and Hanson, M. A. (Eds) (2006a). ‘Developmental Origins of Health and Disease.’ (Cambridge University Press: Cambridge.)
Gluckman, P. D., and Hanson, M. A. (2006b). ‘Mismatch: why Our World No Longer Fits Our Bodies.’ (Oxford University Press: Oxford.)
Gluckman, P. D., Hanson, M. A., Bateson, P., Beedle, A. S., Law, C. M., Bhutta, Z. A., Anokhin, K. V., Bougnères, P., Chandak, G. R., Dasgupta, P., Smith, G. D., Ellison, P. T., Forrester, T., Gilbert, S. F., Jablonka, E., Kaplan, H., Prentice, A. M., Simpson, S. J., Uauy, R., and West-Eberhard, M. J. (2009). Towards a new developmental synthesis: adaptive developmental plasticity and human disease. Lancet 373, 1654–1657.
| Towards a new developmental synthesis: adaptive developmental plasticity and human disease.Crossref | GoogleScholarGoogle Scholar |
Gosby, A. K., Conigrave, A. D., Lau, N. S., Iglesias, M. A., Hall, R. M., Jebb, S. A., Brand-Miller, J., Caterson, I. D., Raubenheimer, D., and Simpson, S. J. (2011). Testing protein leverage in lean humans: a randomised controlled experimental study. PLoS ONE 6, e25929.
| Testing protein leverage in lean humans: a randomised controlled experimental study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVWjurjO&md5=e0d35e140b2c9ab5b0171b8410e60cf7CAS |
Grandison, R. C., Piper, M. D. W., and Partridge, L. (2009). Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061–1064.
| Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsV2ktrjM&md5=657ba54525f9dd9d0534f205a3c73e8eCAS |
Grimm, V., and Railsback, S. F. (2005). ‘Individual-based Modeling and Ecology.’ (Princeton University Press: Princeton, NJ.)
Hansen, B. C. (2001). Causes of obesity and consequences of obesity prevention in non-human primates and other animals. In ‘International Textbook of Obesity’. (Ed. P. Björntorp.) pp. 181–201. (John Wiley and Sons: Chichester, UK.)
Hansen, M. J., Buhl, J., Bazazi, S., Simpson, S. J., and Sword, G. A. (2011). Cannibalism in the lifeboat – collective movement in Australian plague locusts. Behavioral Ecology and Sociobiology 65, 1715–1720.
| Cannibalism in the lifeboat – collective movement in Australian plague locusts.Crossref | GoogleScholarGoogle Scholar |
Hawlena, D., and Schmitz, O. J. (2010). Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics. Proceedings of the National Academy of Sciences of the United States of America 107, 15503–15507.
| Herbivore physiological response to predation risk and implications for ecosystem nutrient dynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFaqu77J&md5=8600d70c07ee51b1db6a010c90e450eaCAS |
Hayes, D. P. (2007). Nutritional hormesis. European Journal of Clinical Nutrition 61, 147–159.
| Nutritional hormesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFGltL8%3D&md5=b190766a39f749e770ce0884fa4aedc4CAS |
Hewson-Hughes, A. K., Hewson-Hughes, V. L., Miller, A. T., Hall, S. R., Simpson, S. J., and Raubenheimer, D. (2011). Geometric analysis of macronutrient selection in the adult domestic cat, Felis catus. The Journal of Experimental Biology 214, 1039–1051.
| Geometric analysis of macronutrient selection in the adult domestic cat, Felis catus.Crossref | GoogleScholarGoogle Scholar |
Hölldobler, B., and Wilson, E. O. (2009). ‘The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies.’ (W.W. Norton & Co.: New York.)
Houston, A., and Sumida, B. (1985). A positive feedback model for switching between two activities. Animal Behaviour 33, 315–325.
| A positive feedback model for switching between two activities.Crossref | GoogleScholarGoogle Scholar |
Huffman, M. A. (2001). Self-medicative behavior in the African great apes: an evolutionary perspective into the origins of human traditional medicine. Bioscience 51, 651–661.
| Self-medicative behavior in the African great apes: an evolutionary perspective into the origins of human traditional medicine.Crossref | GoogleScholarGoogle Scholar |
Huffman, M. A. (2003). Animal self-medication and ethno-medicine: exploration and exploitation of the medicinal properties of plants. The Proceedings of the Nutrition Society 62, 371–381.
| Animal self-medication and ethno-medicine: exploration and exploitation of the medicinal properties of plants.Crossref | GoogleScholarGoogle Scholar |
Hunt, J. H., and Nalepa, C. A. (Eds) (1994). ‘Nourishment and Evolution in Insect Societies.’ (Westview Press: Boulder, CO.)
Hutchings, M. R., Athanasiadou, S., Kyriazakis, I., and Gordon, I. J. (2003). Can animals use foraging behaviour to combat parasites? The Proceedings of the Nutrition Society 62, 361–370.
| Can animals use foraging behaviour to combat parasites?Crossref | GoogleScholarGoogle Scholar |
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22, 415–427.
| Concluding remarks.Crossref | GoogleScholarGoogle Scholar |
Ja, W. W., Carvalho, G. B., Zid, B. M., Mak, E. M., Brummel, T., and Benzer, S. (2009). Water- and nutrient-dependent effects of dietary restriction on Drosophila lifespan. Proceedings of the National Academy of Sciences of the United States of America 106, 18 633–18 637.
| Water- and nutrient-dependent effects of dietary restriction on Drosophila lifespan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKis7zE&md5=2a2cf92c08612ae5da9e7c248dc9a7d9CAS |
Jensen, K., Mayntz, D., Tøft, S., Raubenheimer, D., and Simpson, S. J. (2011). Nutrient regulation in a predator, the wolf spider Pardosa prativaga. Animal Behaviour 81, 993–999.
| Nutrient regulation in a predator, the wolf spider Pardosa prativaga.Crossref | GoogleScholarGoogle Scholar |
Jensen, K., Mayntz, D., Tøft, S., Clissold, F. J., Hunt, J., Raubenheimer, D., and Simpson, S. J. (2012). Optimal foraging for specific nutrients in predatory beetles. Proceedings of the Royal Society B: Biological Sciences.
Kamakura, M. (2011). Royalactin induces queen differentiation in honeybees. Nature 473, 478–483.
| Royalactin induces queen differentiation in honeybees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFyqtb0%3D&md5=4401e6132c5bc9e3f555aac16e4088fcCAS |
Karban, R., and Baldwin, I. T. (1997). ‘Induced Responses to Herbivory.’ (University of Chicago Press: Chicago, IL.)
Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L., and Gordon, J. I. (2011). Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336.
| Human nutrition, the gut microbiome and the immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnsFOqsb4%3D&md5=dd30a6434d138583fc77303b9760fd45CAS |
Kearney, M. (2006). Habitat, environment and niche: what are we modelling? Oikos 115, 186–191.
| Habitat, environment and niche: what are we modelling?Crossref | GoogleScholarGoogle Scholar |
Kearney, M., and Porter, W. P. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12, 334–350.
| Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges.Crossref | GoogleScholarGoogle Scholar |
Kearney, M., Simpson, S. J., Raubenheimer, D., and Helmuth, B. (2010). Modelling the ecological niche from functional traits. Philosophical Transactions of the Royal Society B. Biological Sciences 365, 3469–3483.
| Modelling the ecological niche from functional traits.Crossref | GoogleScholarGoogle Scholar |
Kirkwood, T. B. L. (2005). Understanding the odd science of aging. Cell 120, 437–447.
| Understanding the odd science of aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitVWntbk%3D&md5=a1dc20a3a222cdd55b6112f4ed218a6dCAS |
Kooijman, S. A. L. M. (2009). ‘Dynamic Energy Budget Theory for Metabolic Organisation.’ (Cambridge University Press: Cambridge.)
Kuijper, L. D. J., Anderson, T. R., and Kooijman, S. A. L. M. (2004). C and N gross growth efficiencies of copepod egg production studied using a dynamic energy budget model. Journal of Plankton Research 26, 213–226.
| C and N gross growth efficiencies of copepod egg production studied using a dynamic energy budget model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Kktr8%3D&md5=a2d3e821a7d91ddb128452e08da97ad0CAS |
Kytö, M., Niemelä, P., and Larsson, S. (1996). Insects on trees: population and individual response to fertilization. Oikos 75, 148–159.
| Insects on trees: population and individual response to fertilization.Crossref | GoogleScholarGoogle Scholar |
Le Rohellec, M., and Le Bourg, É. (2009). Contrasted effects of suppressing live yeast from food on longevity, aging and resistance to several stresses in Drosophila melanogaster. Experimental Gerontology 44, 695–707.
| Contrasted effects of suppressing live yeast from food on longevity, aging and resistance to several stresses in Drosophila melanogaster.Crossref | GoogleScholarGoogle Scholar |
Lee, K. P., Behmer, S. T., Simpson, S. J., and Raubenheimer, D. (2002). A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval). Journal of Insect Physiology 48, 655–665.
| A geometric analysis of nutrient regulation in the generalist caterpillar Spodoptera littoralis (Boisduval).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xls1WitLw%3D&md5=84b8096c78650f9a523732b553809dd6CAS |
Lee, K. P., Raubenheimer, D., and Simpson, S. J. (2003). A correlation between nutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta. Journal of Insect Physiology 49, 1161–1171.
| A correlation between nutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXptVentrY%3D&md5=6362f5b069bbdbcf40a56c736c1070e2CAS |
Lee, K. P., Simpson, S. J., and Raubenheimer, D. (2004). A comparison of nutrient regulation between solitarious and gregarious phases of the specialist caterpillar, Spodoptera exempta (Walker). Journal of Insect Physiology 50, 1171–1180.
| A comparison of nutrient regulation between solitarious and gregarious phases of the specialist caterpillar, Spodoptera exempta (Walker).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvFantw%3D%3D&md5=0e6393eb59f7ccdb41dd5e57b1b0b12cCAS |
Lee, K. P., Cory, J. S., Wilson, K., Raubenheimer, D., and Simpson, S. J. (2006a). Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proceedings. Biological Sciences 273, 823–829.
| Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12ju7fO&md5=f240d4459448ccfd4b4eaa24f8fb9d35CAS |
Lee, K. P., Behmer, S. T., and Simpson, S. J. (2006b). Nutrient regulation in relation to diet breadth: a comparison of Heliothis sister species and a hybrid. The Journal of Experimental Biology 209, 2076–2084.
| Nutrient regulation in relation to diet breadth: a comparison of Heliothis sister species and a hybrid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVClt7Y%3D&md5=1f9f0fb0ea702ed592712f34687a0331CAS |
Lee, K. P., Simpson, S. J., Clissold, F. J., Brooks, R., Ballard, J. W. O., Taylor, P. W., Soran, N., and Raubenheimer, D. (2008a). Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proceedings of the National Academy of Sciences of the United States of America 105, 2498–2503.
| Lifespan and reproduction in Drosophila: new insights from nutritional geometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXis1Khu7s%3D&md5=c6e113af70a51ecebb358f430a769c00CAS |
Lee, K. P., Simpson, S. J., and Wilson, K. (2008b). Dietary protein-quality influences melanization and immune function in an insect. Functional Ecology 22, 1052–1061.
| Dietary protein-quality influences melanization and immune function in an insect.Crossref | GoogleScholarGoogle Scholar |
Leibowitz, S. F., Lucas, D. J., Leibowitz, K. L., and Jhanwar, Y. S. (1991). Developmental patterns of macronutrient intake in female and male rats from weaning to maturity. Physiology & Behavior 50, 1167–1174.
| Developmental patterns of macronutrient intake in female and male rats from weaning to maturity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1Omtrg%3D&md5=7f8f7181974571e4cb78a4d3754a5ca6CAS |
Lorch, P. D., Sword, G. A., Gwynne, D. T., and Anderson, G. L. (2005). Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations. Ecological Entomology 30, 548–555.
| Radiotelemetry reveals differences in individual movement patterns between outbreak and non-outbreak Mormon cricket populations.Crossref | GoogleScholarGoogle Scholar |
Lozano, G. A. (1998). Parasitic stress and self-medication. Advances in the Study of Behavior 27, 291–317.
| Parasitic stress and self-medication.Crossref | GoogleScholarGoogle Scholar |
Luckey, T. D., and Stone, P. C. (1960). Hormology in nutrition. Science 132, 1891–1893.
| Hormology in nutrition.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF3c%2Fotl2qtA%3D%3D&md5=a05fe2c7d26934b51afba0db791a2d50CAS |
Mair, W., Piper, M. D. W., and Partridge, L. (2005). Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biology 3, e223.
| Calories do not explain extension of life span by dietary restriction in Drosophila.Crossref | GoogleScholarGoogle Scholar |
Maklakov, A. A., Simpson, S. J., Zajitschek, F., Hall, M. D., Dessmann, J., Clissold, F., Raubenheimer, D., Bonduriansky, R., and Brooks, R. C. (2008). Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Current Biology 18, 1062–1066.
| Sex-specific fitness effects of nutrient intake on reproduction and lifespan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXoslOns78%3D&md5=7e6d0bde7fd5169e2764c617e15f68a3CAS |
Masoro, E. J. (2005). Overview of caloric restriction and ageing. Mechanisms of Ageing and Development 126, 913–922.
| Overview of caloric restriction and ageing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvVGjtr0%3D&md5=737a7b18c9b57665e44533915b6fdcebCAS |
Mayntz, D., Raubenheimer, D., Salomon, M., Tøft, S., and Simpson, S. J. (2005). Nutrient-specific foraging in invertebrate predators. Science 307, 111–113.
| Nutrient-specific foraging in invertebrate predators.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXnvFWh&md5=d95e27d8bced8ea8e962a4d57aa69ac4CAS |
Mayntz, D., Nielsen, V. H., Sørensen, A., Tøft, S., Raubenheimer, D., Hejlesen, C., and Simpson, S. J. (2009). Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Animal Behaviour 77, 349–355.
| Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison.Crossref | GoogleScholarGoogle Scholar |
McCay, C. M., Crowell, M. F., and Maynard, L. A. (1935). The effect of retarded growth upon the length of life and upon ultimate size. Journal of Nutrition 10, 63–79.
| 1:CAS:528:DyaA2MXmtFCgug%3D%3D&md5=9fd8af67ff8766d906663c87e7a9743fCAS |
McMillen, C., and Robinson, J. S. (2005). Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiological Reviews 85, 571–633.
| Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjt12lsLw%3D&md5=81551eb1616af4e29ac45b13140671b0CAS |
Mertz, W. (1981). The essential trace elements. Science 213, 1332–1338.
| The essential trace elements.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXls1Onsrc%3D&md5=543454fb7b3a50e8a16c99018804f7c3CAS |
Miller, R. A., Buehner, G., Chang, Y., Harper, J. M., Sigler, R., and Smith-Wheelock, M. (2005). Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119–125.
| Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlt1Oksr4%3D&md5=f5aa283a0de05b8dbc20e709aa04eeb0CAS |
Miller, G. A., Clissold, F. J., Mayntz, D., and Simpson, S. J. (2009). Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization. Proceedings. Biological Sciences 276, 3581–3589.
| Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization.Crossref | GoogleScholarGoogle Scholar |
Morton, G. J., and Schwartz, M. W. (2011). Leptin and the central nervous system control of glucose metabolism. Physiological Reviews 91, 389–411.
| Leptin and the central nervous system control of glucose metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXns1Cmsrc%3D&md5=f70ded0b14f273edb6411e5f3b1b71cbCAS |
Musten, B., Peace, D., and Anderson, G. H. (1974). Food intake regulation in the weanling rat: self-selection of protein and energy. The Journal of Nutrition 104, 563–572.
| 1:CAS:528:DyaE2cXktFaitbg%3D&md5=f7c4e73e45d873bee5fee8c66cdbde67CAS |
Newland, P. L., and Yates, P. (2008). Nitric oxide modulates salt and sugar responses via different signaling pathways. Chemical Senses 33, 347–356.
| Nitric oxide modulates salt and sugar responses via different signaling pathways.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslyhur8%3D&md5=9e6f96d29200c84efd2ef07c0f99fa2aCAS |
Ng, S.-F., Lin, R. C. Y., Laybutt, D. R., Barres, R., Owens, J. A., and Morris, M. J. (2010). Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offsrping. Nature 467, 963–966.
| Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offsrping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWlsr%2FF&md5=47cd0538da34312226ec6d12890550b0CAS |
Nonaka, E., and Holme, P. (2007). Agent-based model approach to optimal foraging in heterogeneous landscapes: effects of patch clumpiness. Ecography 30, 777–788.
| Agent-based model approach to optimal foraging in heterogeneous landscapes: effects of patch clumpiness.Crossref | GoogleScholarGoogle Scholar |
O’Brien, D. M., Min, K.-J., Larsen, T., and Tatar, M. (2008). Use of stable isotopes to examine how dietary restriction extends Drosophila lifespan. Current Biology 18, R155–R156.
| Use of stable isotopes to examine how dietary restriction extends Drosophila lifespan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXisVWntbg%3D&md5=7ef6eeb7d1172d9e7fd8321812a62a5bCAS |
Oom, S. P., Beecham, J. A., Legg, C. J., and Hester, A. J. (2004). Foraging in a complex environment: from foraging strategies to emergent spatial properties. Ecological Complexity 1, 299–327.
| Foraging in a complex environment: from foraging strategies to emergent spatial properties.Crossref | GoogleScholarGoogle Scholar |
Orentreich, N., Matias, J. R., DeFelice, A., and Zimmerman, J. A. (1993). Low methionine ingestion by rats extends life span. The Journal of Nutrition 123, 269–274.
| 1:CAS:528:DyaK3sXhsVKlu7w%3D&md5=591b3ab9d18d4c033656c0a85ca8aeaeCAS |
Peck, M. D., Babcock, G. F., and Alexander, J. W. (1992). The role of protein and calorie restriction in outcome from Salmonella infection in mice. Journal of Parenteral and Enteral Nutrition 16, 561–565.
| The role of protein and calorie restriction in outcome from Salmonella infection in mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s7ls1Wnug%3D%3D&md5=d154d2adaf1ce5a1da42980d0c85bef7CAS |
Pincebourde, S., and Casas, J. (2006). Multitrophic biophysical budgets: thermal ecology of an intimate herbivore insect plant interaction. Ecological Monographs 76, 175–194.
| Multitrophic biophysical budgets: thermal ecology of an intimate herbivore insect plant interaction.Crossref | GoogleScholarGoogle Scholar |
Pirk, C. W. W., Boodhoo, C., Human, H., and Nicolson, S. W. (2010). The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie 41, 62–72.
| The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjs1GisLw%3D&md5=48edca8c954eaf25f605c7a1c412ba87CAS |
Ponton, F., Lalubin, F., Fromont, C., Wilson, K., Behm, C., and Simpson, S. J. (2011a). Hosts use altered macronutrient intake to circumvent parasite-induced reduction in fecundity. International Journal for Parasitology 41, 43–50.
| Hosts use altered macronutrient intake to circumvent parasite-induced reduction in fecundity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyntbvI&md5=d00db9440462210f0979e4697df7744fCAS |
Ponton, F., Wilson, K., Cotter, S. C., Raubenheimer, D., and Simpson, S. J. (2011b). Nutritional immunology: a multi-dimensional approach. PLoS Pathogens 7, e1002223.
| Nutritional immunology: a multi-dimensional approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Cmsr7P&md5=5fee8202ae6de70a9f66ac258bea1c15CAS |
Porter, W. P., and Gates, D. M. (1969). Thermodynamic equilibria of animals with environment. Ecological Monographs 39, 227–244.
| Thermodynamic equilibria of animals with environment.Crossref | GoogleScholarGoogle Scholar |
Povey, S., Cotter, S. C., Simpson, S. J., Lee, K. P., and Wilson, K. (2009). Can the protein costs of bacterial resistance be offset by altered feeding behaviour? Journal of Animal Ecology 78, 437–446.
| Can the protein costs of bacterial resistance be offset by altered feeding behaviour?Crossref | GoogleScholarGoogle Scholar |
Raubenheimer, D., and Bassil, K. (2007). Separate effects of macronutrient concentration and balance on plastic gut responses in locusts. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 177, 849–855.
| Separate effects of macronutrient concentration and balance on plastic gut responses in locusts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1aqs7zP&md5=b698066660ec9698a88ebf8d924eb4a2CAS |
Raubenheimer, D., and Jones, S. A. (2006). Nutritional imbalance in an extreme generalist omnivore: tolerance and recovery through complementary food selection. Animal Behaviour 71, 1253–1262.
| Nutritional imbalance in an extreme generalist omnivore: tolerance and recovery through complementary food selection.Crossref | GoogleScholarGoogle Scholar |
Raubenheimer, D., and Simpson, S. J. (1992). Analysis of covariance: an alternative to nutritional indices. Entomologia Experimentalis et Applicata 62, 221–231.
| Analysis of covariance: an alternative to nutritional indices.Crossref | GoogleScholarGoogle Scholar |
Raubenheimer, D., and Simpson, S. J. (1993). The geometry of compensatory feeding in the locust. Animal Behaviour 45, 953–964.
| The geometry of compensatory feeding in the locust.Crossref | GoogleScholarGoogle Scholar |
Raubenheimer, D., and Simpson, S. J. (1994). The analysis of nutrient budgets. Functional Ecology 8, 783–791.
| The analysis of nutrient budgets.Crossref | GoogleScholarGoogle Scholar |
Raubenheimer, D., and Simpson, S. J. (1995). Constructing nutrient budgets. Entomologia Experimentalis et Applicata 77, 99–104.
| Constructing nutrient budgets.Crossref | GoogleScholarGoogle Scholar |
Raubenheimer, D., and Simpson, S. J. (1999). Integrating nutrition: a geometrical approach. Entomologia Experimentalis et Applicata 91, 67–82.
| Integrating nutrition: a geometrical approach.Crossref | GoogleScholarGoogle Scholar |
Raubenheimer, D., and Simpson, S. J. (2003). Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. The Journal of Experimental Biology 206, 1669–1681.
| Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7msVKrsA%3D%3D&md5=4d29ad674e858d6f7f7f678dea196e80CAS |
Raubenheimer, D., and Simpson, S. J. (2006). The challenge of supplementary feeding: can geometric analysis help save the kakapo? Notornis 53, 100–111.
Raubenheimer, D., and Simpson, S. J. (2009). Nutritional pharmecology: doses, nutrients, toxins, and medicines. Integrative and Comparative Biology 49, 329–337.
| Nutritional pharmecology: doses, nutrients, toxins, and medicines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGrsr%2FF&md5=02c64a5b92f3f16ae0b29119ad0909fdCAS |
Raubenheimer, D., and Tucker, D. (1997). Associative learning by locusts: pairing of visual cues with consumption of protein and carbohydrate. Animal Behaviour 54, 1449–1459.
| Associative learning by locusts: pairing of visual cues with consumption of protein and carbohydrate.Crossref | GoogleScholarGoogle Scholar |
Raubenheimer, D., Lee, K. P., and Simpson, S. J. (2005). Does Bertrand’s rule apply to macronutrients? Proceedings. Biological Sciences 272, 2429–2434.
| Does Bertrand’s rule apply to macronutrients?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MrmsleltQ%3D%3D&md5=990f15043f3a62457edf4272e570fb17CAS |
Raubenheimer, D., Mayntz, D., Simpson, S. J., and Tøft, S. (2007). Nutrient specific compensation following overwintering diapause in a generalist predatory invertebrate: implications for intraguild predations. Ecology 88, 2598–2608.
| Nutrient specific compensation following overwintering diapause in a generalist predatory invertebrate: implications for intraguild predations.Crossref | GoogleScholarGoogle Scholar |
Raubenheimer, D., Simpson, S. J., and Mayntz, D. (2009). Nutrition, ecology and nutritional ecology: toward an integrated framework. Functional Ecology 23, 4–16.
| Nutrition, ecology and nutritional ecology: toward an integrated framework.Crossref | GoogleScholarGoogle Scholar |
Ribeiro, C., and Dickson, B. J. (2010). Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Current Biology 20, 1000–1005.
| Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVaku7k%3D&md5=07feae19be8ebd24ac4916da45e2fcb5CAS |
Rodriguez, E., and Wrangham, R. (1993). Zoopharmacognosy: the use of medicinal plants by animals. In ‘Recent Advances in Phytochemistry. Phytochemical Potential of Tropical Plants. Vol. 27’. (Eds K. R. Downum, J. T. Romeo, and H. A. Stafford.) pp. 89–105. (Plenum Press: New York.)
Romano, M. D., Piatt, J. F., and Roby, D. D. (2006). Testing the junk-food hypothesis on marine birds: effects of prey type on growth and development. Waterbirds 29, 407–414.
| Testing the junk-food hypothesis on marine birds: effects of prey type on growth and development.Crossref | GoogleScholarGoogle Scholar |
Rosen, D. A. S., and Trites, A. W. (2000). Pollock and the decline of Steller sea lions: testing the junk-food hypothesis. Canadian Journal of Zoology 78, 1243–1250.
| Pollock and the decline of Steller sea lions: testing the junk-food hypothesis.Crossref | GoogleScholarGoogle Scholar |
Ross, M. H. (1961). Length of life and nutrition in the rat. The Journal of Nutrition 75, 197–210.
| 1:CAS:528:DyaF3sXksVeks7k%3D&md5=fb9e178fec2d38c2cc5c1fabb1371373CAS |
Rubio, V. C., Sánchez-Vázquez, F. J., and Madrid, J. A. (2003). Macronutrient selection through postingestive signals in sea bass fed on gelatine capsules. Physiology & Behavior 78, 795–803.
| Macronutrient selection through postingestive signals in sea bass fed on gelatine capsules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFGlt7w%3D&md5=eefe3ddfd38c09273b36c52b54c91aaeCAS |
Sánchez-Vázquez, F. J., Yamamoto, T., Akiyama, T., Madrid, J. A., and Tabata, M. (1999). Macronutrient self-selection through demand-feeders in rainbow trout. Physiology & Behavior 66, 45–51.
| Macronutrient self-selection through demand-feeders in rainbow trout.Crossref | GoogleScholarGoogle Scholar |
Schoonhoven, L. M., van Loon, J. J. A., and Dicke, M. (2005). ‘Insect–Plant Biology.’ (Oxford University Press: Oxford.)
Schwartz, S. M., Kemnitz, J. W., and Howard, C. F. (1993). Obesity in free-ranging rhesus macaques. International Journal of Obesity 17, 1–9.
| 1:STN:280:DyaK3s7psVCmsw%3D%3D&md5=097851ca7c2f7a89047955b889ab64c6CAS |
Schwartz, M. W., Woods, S. C., Porte, D., Seeley, R. J., and Baskin, D. G. (2000). Central nervous control of food intake. Nature 404, 661–671.
| 1:CAS:528:DC%2BD3cXis1Grur4%3D&md5=6ed912431568eda967da80b54489e1e1CAS |
Sclafani, A. (2000). Macronutrient-conditioned flavor preferences. In ‘Neural and Metabolic Control of Macronutrient Intake’. (Eds H.-R. Berthoud and R. J. Seeley.) pp. 93–107. (CRC Press: Boca Raton, FL.)
Shuster, S. M., Lonsdorf, E. V., Wimp, G. M., Bailey, J. K., and Whitham, T. G. (2006). Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. Evolution 60, 991–1003.
| 1:STN:280:DC%2BD28zpvVWjtQ%3D%3D&md5=ea06fd46a70112b4f90f2e22a7ff43c6CAS |
Silva, J. E. (2006). Thermogenic mechanisms and their hormonal regulation. Physiological Reviews 86, 435–464.
| Thermogenic mechanisms and their hormonal regulation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xktlylu70%3D&md5=89ebef9b46307c948c7fd08f9b69adccCAS |
Simpson, S. J., and Raubenheimer, D. (1993). A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philosophical Transactions of the Royal Society B. Biological Sciences 342, 381–402.
| A multi-level analysis of feeding behaviour: the geometry of nutritional decisions.Crossref | GoogleScholarGoogle Scholar |
Simpson, S. J., and Raubenheimer, D. (1995). The geometric analysis of feeding and nutrition: a user’s guide. Journal of Insect Physiology 41, 545–553.
| The geometric analysis of feeding and nutrition: a user’s guide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntVWjtbY%3D&md5=c0e654b4a4848f449628e72484856d96CAS |
Simpson, S. J., and Raubenheimer, D. (1997). The geometric analysis of feeding and nutrition in the rat. Appetite 28, 201–213.
| The geometric analysis of feeding and nutrition in the rat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szmtFajsg%3D%3D&md5=3ea49215766e33c7649602dd5c33cf10CAS |
Simpson, S. J., and Raubenheimer, D. (2000). The hungry locust. Advances in the Study of Behavior 29, 1–44.
| The hungry locust.Crossref | GoogleScholarGoogle Scholar |
Simpson, S. J., and Raubenheimer, D. (2001). The geometric analysis of nutrient–allelochemical interactions: a case study using locusts. Ecology 82, 422–439.
Simpson, S. J., and Raubenheimer, D. (2005). Obesity: the protein leverage hypothesis. Obesity Reviews 6, 133–142.
| Obesity: the protein leverage hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFyrsr0%3D&md5=fbc212f90b4cc256e4a528ae9b3e3659CAS |
Simpson, S. J., and Raubenheimer, D. (2007). Caloric restriction and aging revisited: the need for a geometric analysis of the nutritional bases of aging. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 62, 707–713.
| Caloric restriction and aging revisited: the need for a geometric analysis of the nutritional bases of aging.Crossref | GoogleScholarGoogle Scholar |
Simpson, S. J., and Raubenheimer, D. (2009). Macronutrient balance and lifespan. Aging 1, 875–880.
| 1:CAS:528:DC%2BD1MXhsVGqurfP&md5=fc052539c7995fb65bf12fa39593c458CAS |
Simpson, S. J., and Raubenheimer, D. (2012). ‘The Nature of Nutrition: a Unifying Framework from Animal Adaptation to Human Obesity.’ (Princeton University Press: Princeton, NJ.)
Simpson, S. J., and White, P. R. (1990). Associative learning and locust feeding: evidence for a ‘learned hunger’ for protein. Animal Behaviour 40, 506–513.
| Associative learning and locust feeding: evidence for a ‘learned hunger’ for protein.Crossref | GoogleScholarGoogle Scholar |
Simpson, S. J., Raubenheimer, D., Behmer, S. T., Whitworth, A., and Wright, G. A. (2002). A comparison of nutritional regulation in solitarious and gregarious phase nymphs of the desert locust, Schistocerca gregaria. The Journal of Experimental Biology 205, 121–129.
| 1:STN:280:DC%2BD38%2FpvVylsA%3D%3D&md5=6a1dba61c8de0cdd4b39e2f967a653b4CAS |
Simpson, S. J., Sibly, R. M., Lee, K. P., Behmer, S. T., and Raubenheimer, D. (2004). Optimal foraging when regulating intake of multiple nutrients. Animal Behaviour 68, 1299–1311.
| Optimal foraging when regulating intake of multiple nutrients.Crossref | GoogleScholarGoogle Scholar |
Simpson, S. J., Sword, G. A., Lorch, P. D., and Couzin, I. D. (2006). Cannibal crickets on a forced march for protein and salt. Proceedings of the National Academy of Sciences of the United States of America 103, 4152–4156.
| Cannibal crickets on a forced march for protein and salt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFWiurY%3D&md5=3f5a9ea0cdbd87ee50760b86cd370dafCAS |
Simpson, S. J., Raubenheimer, D., Charleston, M. A., Clissold, F. J., ARC-NZ Vegetation Function Network Herbivory Working Group. (2010). Modelling nutritional interactions: from individuals to communities. Trends in Ecology & Evolution 25, 53–60.
| Modelling nutritional interactions: from individuals to communities.Crossref | GoogleScholarGoogle Scholar |
Skorupa, D. A., Dervisefendic, A., Zwiener, J., and Pletcher, S. D. (2008). Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7, 478–490.
| Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvVOht7k%3D&md5=a4c367b5be9d9c462d6fb5b07f1b94a9CAS |
Slansky, F. (1992). Allelochemical–nutrient interactions in herbivore nutritional ecology. In ‘Herbivores: Their Interaction with Secondary Plant Metabolites’. (Eds G. A. Rosenthal and M. R. Berenbaum.) pp. 135–174. (Academic Press: New York.)
Smith, V. H., and Holt, R. D. (1996). Resource competition and within-host disease dynamics. Trends in Ecology & Evolution 11, 386–389.
| Resource competition and within-host disease dynamics.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFGitw%3D%3D&md5=db830b5936b43fbfa2f0c23d60c4e2f4CAS |
Sørensen, A., Mayntz, D., Simpson, S. J., and Raubenheimer, D. (2010). Dietary ratio of protein to carbohydrate induces plastic responses in the gastrointestinal tract of mice. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 180, 259–266.
| Dietary ratio of protein to carbohydrate induces plastic responses in the gastrointestinal tract of mice.Crossref | GoogleScholarGoogle Scholar |
Sotka, E. E., Forbey, J., Horn, M., Poore, A., Raubenheimer, D., and Whalen, K. (2009). The emerging role of pharmacology in understanding marine and freshwater consumer–prey interactions. Integrative and Comparative Biology 49, 291–313.
| The emerging role of pharmacology in understanding marine and freshwater consumer–prey interactions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGrsrzM&md5=9165155c798356e6438866cbd9314a4fCAS |
Sousa, T., Domingos, T., and Kooijman, S. A. L. M. (2008). From empirical patterns to theory: a formal metabolic theory of life. Philosophical Transactions of the Royal Society B. Biological Sciences 363, 2453–2464.
| From empirical patterns to theory: a formal metabolic theory of life.Crossref | GoogleScholarGoogle Scholar |
South, S. H., House, C. M., Moore, A. J., Simpson, S. J., and Hunt, J. (2011). Male cockroaches prefer a high carbohydrate diet that makes them more attractive to females: implications for the study of condition-dependence. Evolution 65, 1594–1606.
| Male cockroaches prefer a high carbohydrate diet that makes them more attractive to females: implications for the study of condition-dependence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXoslOltbc%3D&md5=8f5c1b93a37f189733006116757e8837CAS |
Stephens, D. W., and Krebs, J. R. (1986). ‘Foraging Theory.’ (Princeton University Press: Princeton, NJ.)
Stephens, D. W., Brown, J. S., and Ydenberg, R. C. (2007). ‘Foraging: Behavior and Ecology.’ (The University of Chicago Press: Chicago, IL.)
Sterner, R. W., and Elser, J. J. (2002). ‘Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere.’ (Princeton University Press: Princeton, NJ.)
Sterner, R. W., Elser, J. J., Chrzanowski, T. H., Schampel, J. H., and George, N. B. (1996). Biogeochemistry and trophic ecology: a new food web diagram. In ‘Food Webs: Integration of Patterns and Dynamics’. (Eds G. A. Polis and K. O. Winemiller.) pp. 72–80. (Chapman and Hall: New York.)
Stock, M. J. (1999). Gluttony and thermogenesis revisited. International Journal of Obesity 23, 1105–1117.
| Gluttony and thermogenesis revisited.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2Fkslalsg%3D%3D&md5=655592487fcb31275a407a67a29cf16fCAS |
Sword, G. A., Lorch, P. D., and Gwynne, D. T. (2005). Migratory bands give crickets protection. Nature 433, 703.
| Migratory bands give crickets protection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtleqs7o%3D&md5=5d8f22ad29a8b0bf52f6691e494fb731CAS |
Tatar, M. (2007). Diet restriction in Drosophila melanogaster. In ‘Mechanisms of Dietary Restriction in Aging and Disease’. (Eds C. V. Mobbs, K. Yen, and P. R. Hof.) pp. 115–136. (Karger: Basel.)
Tatar, M. (2011). The plate half-full: status of research on the mechanisms of dietary restriction in Drosophila melanogaster. Experimental Gerontology 46, 363–368.
| The plate half-full: status of research on the mechanisms of dietary restriction in Drosophila melanogaster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkvVWhsL4%3D&md5=4f65c3e9fc5f566a11a40fce384bd8aeCAS |
Tilman, D. (1982). ‘Resource Competition and Community Structure.’ (Princeton University Press: Princeton, NJ.)
Tomé, D. (2004). Protein, amino acids and the control of food intake. The British Journal of Nutrition 92, S27–S30.
| Protein, amino acids and the control of food intake.Crossref | GoogleScholarGoogle Scholar |
Torregrossa, A.-M., and Dearing, D. (2009). Nutritional toxicology of mammals: regulated intake of plant secondary compounds. Functional Ecology 23, 48–56.
| Nutritional toxicology of mammals: regulated intake of plant secondary compounds.Crossref | GoogleScholarGoogle Scholar |
Touzani, K., and Sclafani, A. (2005). Critical role of amygdala in flavor but not taste preference learning in rats. The European Journal of Neuroscience 22, 1767–1774.
| Critical role of amygdala in flavor but not taste preference learning in rats.Crossref | GoogleScholarGoogle Scholar |
Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., and Gordon, G. I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine 1, 6–14.
Vargas, M. A., Luo, N., Yamaguchi, A., and Kapahi, P. (2010). A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Current Biology 20, 1006–1011.
| A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnsVaku7Y%3D&md5=db6b1a5547c1675c24876fca38be6515CAS |
Vigne, P., and Frelin, C. (2010). Hypoxia modifies the feeding preferences of Drosophila. Consequences for diet dependent hypoxic survival. BMC Physiology 10, 1–9.
| Hypoxia modifies the feeding preferences of Drosophila. Consequences for diet dependent hypoxic survival.Crossref | GoogleScholarGoogle Scholar |
Villalba, J. J., and Provenza, F. D. (2007). Self-medication and homeostatic behaviour in herbivores: learning about the benefits of nature’s pharmacy. Animal 1, 1360–1370.
| Self-medication and homeostatic behaviour in herbivores: learning about the benefits of nature’s pharmacy.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vpt1WlsA%3D%3D&md5=b5e0bdeec99651295983df99b0dc84e5CAS |
Warbrick-Smith, J., Behmer, S. T., Lee, K. P., Raubenheimer, D., and Simpson, S. J. (2006). Evolving resistance to obesity in an insect. Proceedings of the National Academy of Sciences of the United States of America 103, 14 045–14 049.
| Evolving resistance to obesity in an insect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVCqs7vF&md5=3fcca2f286fe7744cbf8bbff88f154d7CAS |
Weindruch, R., and Walford, R. L. (1988). ‘The Retardation of Aging and Disease by Dietary Restriction.’ (Charles C. Thomas: Springfield, IL.)
White, T. C. R. (1983). ‘The Inadequate Environment: Nitrogen and the Abundance of Animals.’ (Springer: Berlin.)
Wilder, S. M., and Eubanks, M. D. (2010). Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 91, 3114–3117.
| Might nitrogen limitation promote omnivory among carnivorous arthropods?Crossref | GoogleScholarGoogle Scholar |
Withers, P. C., and Cooper, C. E. (2010). Metabolic depression: a historical perspective. In ‘Aestivation: molecular and Physiological Aspects. Progress in Molecular and Subcellular Biology. Vol. 49’. (Eds C. A. Navas and J. E. Carvalho.) pp. 1–23. (Springer: Berlin.)
Yarmolinsky, D. A., Zuker, C. S., and Ryba, N. J. (2009). Common sense about taste: from mammals to insects. Cell 139, 234–244.
| Common sense about taste: from mammals to insects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFWht7zO&md5=64b586410fe21979f060e9db727e6550CAS |
Zanotto, F. P., Simpson, S. J., and Raubenheimer, D. (1993). The regulation of growth by locusts through post-ingestive compensation for variation in the levels of dietary protein and carbohydrate. Physiological Entomology 18, 425–434.
| The regulation of growth by locusts through post-ingestive compensation for variation in the levels of dietary protein and carbohydrate.Crossref | GoogleScholarGoogle Scholar |
Zanotto, F. P., Gouveia, S. M., Simpson, S. J., Raubenheimer, D., and Calder, P. C. (1997). Nutritional homeostasis in locusts: is there a mechanism for increased energy expenditure during carbohydrate overfeeding? The Journal of Experimental Biology 200, 2437–2448.
Zera, A. J., and Harshman, L. G. (2001). The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics 32, 95–126.
| The physiology of life history trade-offs in animals.Crossref | GoogleScholarGoogle Scholar |
Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432.
| Positional cloning of the mouse obese gene and its human homologue.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisVGqsbs%3D&md5=db1c622b3860e06f7d5526409663fc14CAS |
Zimmerman, J. A., Malloy, V., Krajcik, R., and Orentreich, N. (2003). Nutritional control of aging. Experimental Gerontology 38, 47–52.
| Nutritional control of aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXkvFWnsA%3D%3D&md5=c6925cb13edae96bfdc4310392b9d19bCAS |