Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Is body size variation in the platypus (Ornithorhynchus anatinus) associated with environmental variables?

Elise Furlan A F , J. Griffiths B C , N. Gust C , R. Armistead B , P. Mitrovski B , K. A. Handasyde D , M. Serena E , A. A. Hoffmann A and A. R. Weeks A
+ Author Affiliations
- Author Affiliations

A Department of Genetics, Bio21 Institute, The University of Melbourne, Vic. 3010, Australia.

B CESAR Consultants, 55 Flemington Road, North Melbourne, Vic. 3051, Australia.

C Department of Primary Industries, Parks, Water and Environment, Resource Management and Conservation Division, Tas. 7001, Australia.

D Department of Zoology, The University of Melbourne, Vic. 3010, Australia.

E Australian Platypus Conservancy, Wiseleigh, Vic. 3885, Australia.

F Corresponding author. Email: e.furlan@pgrad.unimelb.edu.au

Australian Journal of Zoology 59(4) 201-215 https://doi.org/10.1071/ZO11056
Submitted: 5 August 2011  Accepted: 9 December 2011   Published: 17 February 2012

Abstract

The body size of the platypus (Ornithorhynchus anatinus) is known to vary across both its latitudinal range and relatively short geographic distances. Here we consider how variation in platypus length and weight associates with environmental variables throughout the species’ range. Based on data from over 800 individuals, a Bergmann’s cline (increased body size in regions of lower temperature) was detected across the species latitudinal range. The opposite association, however, was present at smaller scales when comparing platypus body size and temperature within southern mainland Australia, or within an individual river basin. Temperature regimes alone clearly did not dictate body size in platypuses, although disentangling the effects of different climatic variables on body size variation was difficult because of correlations amongst variables. Nevertheless, within suitable platypus habitat in south-eastern Australia, areas of relatively lower rainfall and higher temperatures were typically associated with larger-bodied platypuses. The potential benefits to larger-bodied animals living under these conditions are explored, including consideration of variation in energy expenditure and food availability. Assuming these associations with environmental variables are biologically significant, a shift in platypus body size is anticipated in the future with predicted changes in climate.

Additional keywords: environmental variation, GIS, morphology.


References

Akiyama, S. (1998). Molecular ecology of the platypus (Ornithorhynchus anatinus). School of Biochemistry and Genetics. Ph.D. Thesis, La Trobe University, Melbourne.

Arnett, A. E., and Gotelli, N. J. (1999). Geographic variation in life-history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann’s rule. Evolution 53, 1180–1188.
Geographic variation in life-history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann’s rule.Crossref | GoogleScholarGoogle Scholar |

Ashton, K. G., Tracy, M. C., and de Queiroz, A. (2000). Is Bergmann’s rule valid for mammals? American Naturalist 156, 390–415.
Is Bergmann’s rule valid for mammals?Crossref | GoogleScholarGoogle Scholar |

Aulstad, D., Trygve, G., and Skjervold, H. (1972). Genetic and environmental sources of variation in length and weight of rainbow trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada 29, 237–241.
Genetic and environmental sources of variation in length and weight of rainbow trout (Salmo gairdneri).Crossref | GoogleScholarGoogle Scholar |

Beaugrand, G., and Reid, P. C. (2003). Long-term changes in phytoplankton, zooplankton and salmon related to climate. Global Change Biology 9, 801–817.
Long-term changes in phytoplankton, zooplankton and salmon related to climate.Crossref | GoogleScholarGoogle Scholar |

Bethge, P. (2002). Energetics and foraging behaviour of the platypus. Masters Thesis, University of Tasmania, Hobart.

Bethge, P., Munks, S., Otley, H., and Nicol, S. (2004). Platypus burrow temperatures at a subalpine Tasmanian lake. Proceedings of the Linnean Society of New South Wales 125, 273–276.

Blois, J. L., Feranec, R. S., and Hadly, E. A. (2008). Environmental influences on spatial and temporal patterns of body-size variation in California ground squirrels (Spermophilus beecheyi). Journal of Biogeography 35, 602–613.
Environmental influences on spatial and temporal patterns of body-size variation in California ground squirrels (Spermophilus beecheyi).Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., and Lake, P. S. (1990). The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analyses of physicochemical features. Freshwater Biology 24, 123–141.
The ecology of two intermittent streams in Victoria, Australia. I. Multivariate analyses of physicochemical features.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXhtVyns74%3D&md5=1d94f7439edad27fb183b344f9a0bbbfCAS |

Boulton, A. J., and Lake, P. S. (1992a). The ecology of two intermittent streams in Victoria, Australia. II. Comparisons of faunal composition between habitats, rivers and years. Freshwater Biology 27, 99–121.
The ecology of two intermittent streams in Victoria, Australia. II. Comparisons of faunal composition between habitats, rivers and years.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., and Lake, P. S. (1992b). The ecology of two intermittent streams in Victoria, Australia. III. Temporal changes in faunal composition. Freshwater Biology 27, 123–138.
The ecology of two intermittent streams in Victoria, Australia. III. Temporal changes in faunal composition.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J., Peterson, C. G., Grimm, N. B., and Fisher, S. G. (1992). Stability of an aquatic macroinvertebrate community in a multiyear hydrologic disturbance regime. Ecology 73, 2192–2207.
Stability of an aquatic macroinvertebrate community in a multiyear hydrologic disturbance regime.Crossref | GoogleScholarGoogle Scholar |

Boyce, M. S. (1978). Climatic variability and body size variation in the muskrats (Ondatra zibethicus) of North America. Oecologia 36, 1–19.
Climatic variability and body size variation in the muskrats (Ondatra zibethicus) of North America.Crossref | GoogleScholarGoogle Scholar |

Boyce, M. S. (1979). Seasonality and patterns of natural selection for life histories. American Naturalist 114, 569–583.
Seasonality and patterns of natural selection for life histories.Crossref | GoogleScholarGoogle Scholar |

Boyko, A. R., Quignon, P., Li, L., Schoenebeck, J. J., Degenhardt, J. D., Lohmueller, K. E., Zhao, K., Brisbin, A., Parker, H. G., vonHoldt, B. M., Cargill, M., Auton, A., Reynolds, A., Elkahloun, A. G., Castelhano, M., Mosher, D. S., Sutter, N. B., Johnson, G. S., Novembre, J., Hubisz, M. J., Siepel, A., Wayne, R. K., Bustamante, C. D., and Ostrander, E. A. (2010). A simple genetic architecture underlies morphological variation in dogs. PLoS Biology 8, e1000451.
A simple genetic architecture underlies morphological variation in dogs.Crossref | GoogleScholarGoogle Scholar |

Brey, T., Rumohr, H., and Ankar, S. (1988). Energy content of macrobenthic invertebrates: general conversion factors from weight to energy. Journal of Experimental Marine Biology and Ecology 117, 271–278.
Energy content of macrobenthic invertebrates: general conversion factors from weight to energy.Crossref | GoogleScholarGoogle Scholar |

Brown, J. H. (1973). Species diversity of seed-eating desert rodents in sand dune habitats. Ecology 54, 775–787.
Species diversity of seed-eating desert rodents in sand dune habitats.Crossref | GoogleScholarGoogle Scholar |

Brown, J. H. (1975). Geographical ecology of desert rodents. In ‘Ecology and Evolution of Communities’. (Eds M. L. Cody and J. M. Diamond.) pp. 315–341. (Belknap Press of Harvard University Press: Cambridge, MA.)

Burrell, H. (1927). ‘The Platypus.’ (Angus and Robertson: Sydney.)

Calder, W. A. (1974). Consequences of body size for avian energetics. In ‘Avian Energetics’. (Ed. R. A. Paynter.) pp. 86–151. (Nuttall Ornithology Club: Cambridge.)

Carrick, F. N., Grant, T. R., and Temple-Smith, P. D. (2008). Platypus. In ‘The Mammals of Australia’. 3rd edn. (Eds S. Van Dyck and R. Strahan.) pp. 32–35. (Reed New Holland: Sydney.)

Clarke, A., MacNally, R., Bond, N., and Lake, P. S. (2010). Flow permanence affects aquatic macroinvertebrate diversity and community structure in three headwater streams in a forested catchment. Canadian Journal of Fisheries and Aquatic Sciences 67, 1649–1657.
Flow permanence affects aquatic macroinvertebrate diversity and community structure in three headwater streams in a forested catchment.Crossref | GoogleScholarGoogle Scholar |

Clutton-Brock, T. H., Albon, S. D., and Guinness, F. E. (1987). Early development and population dynamics in red deer. I. Demographic consequences of density dependent changes in birth weight and date. Journal of Animal Ecology 56, 53–67.
Early development and population dynamics in red deer. I. Demographic consequences of density dependent changes in birth weight and date.Crossref | GoogleScholarGoogle Scholar |

Comita, G. W., and Schindler, D. W. (1963). Calorific values of microcrustacea. Science 140, 1394–1396.
Calorific values of microcrustacea.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvht1eqtg%3D%3D&md5=cfaf8950a9472dd779c040eb054a7052CAS |

Dobson, F. S., Zinner, B., and Silva, M. (2003). Testing models of biological scaling with mammalian population densities. Canadian Journal of Zoology – Revue Canadienne De Zoologie 81, 844–851.
Testing models of biological scaling with mammalian population densities.Crossref | GoogleScholarGoogle Scholar |

Doncaster, C. P., Dumonteil, E., Barre, H., and Jouventin, P. (1990). Temperature regulation of young coypus (Myocastor coypus) in air and water. American Journal of Physiology 259, R1220–R1227.
| 1:STN:280:DyaK3M%2FotlSqug%3D%3D&md5=a6651d337dfc819845765abfa5d72a56CAS |

Dorn, N. J. (2008). Colonization and reproduction of large macroinvertebrates are enhanced by drought-related fish reductions. Hydrobiologia 605, 209–218.
Colonization and reproduction of large macroinvertebrates are enhanced by drought-related fish reductions.Crossref | GoogleScholarGoogle Scholar |

Edwards, M., and Richardson, A. J. (2004). Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884.
Impact of climate change on marine pelagic phenology and trophic mismatch.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslCnu7k%3D&md5=345e4c178703734a4d51fe5b7d2c4aa5CAS |

Fang, J., Piao, S., Tang, Z., Peng, C., and Ji, W. (2001). Interannual variability in net primary production and precipitation. Science 293, 1723.
Interannual variability in net primary production and precipitation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mrgs1Cjug%3D%3D&md5=481f7521d6328fb481bb9c17de01f7daCAS |

Faragher, R. A., Grant, T. R., and Carrick, F. N. (1979). Food of the platypus (Ornithorhynchus anatinus) with notes on the food of the brown trout (Salmo trutta) in the Shoalhaven River, N.S.W. Australian Journal of Ecology 4, 171–179.
Food of the platypus (Ornithorhynchus anatinus) with notes on the food of the brown trout (Salmo trutta) in the Shoalhaven River, N.S.W.Crossref | GoogleScholarGoogle Scholar |

Flint, J., and Mackay, T. F. C. (2009). Genetic architecture of quantitative traits in mice, flies and humans. Genome Research 19, 723–733.
Genetic architecture of quantitative traits in mice, flies and humans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFykur8%3D&md5=d132ca31cc11c8ba10015e967ac15663CAS |

Gongora, J., Swan, A. B., Chong, A. Y., Ho, S. Y. W., Damayanti, C. S., Kolomyjec, S., Grant, T., Miller, E., Blair, D., Furlan, E., and Gust, N. (2011). Genetic structure and phylogeography of platypuses revealed by mitochondrial DNA. Journal of Zoology 286, 110–119.
Genetic structure and phylogeography of platypuses revealed by mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Grant, T. R. (1982). Food of the platypus, Ornithorhynchus anatinus (Monotremata: Ornithorhynchidae), from various water bodies in New South Wales. Australian Mammalogy 5, 235–236.

Grant, T. (2007). ‘Platypus.’ 3rd edn. (CSIRO: Melbourne.)

Grant, T. R., and Carrick, F. N. (1978). Some aspects of the ecology of the platypus, Ornithorhynchus anatinus, in the upper Shoalhaven River, New South Wales. Australian Zoologist 20, 181–189.

Grant, T. R., and Dawson, T. J. (1978). Temperature regulation in the platypus, Ornithorhynchus anatinus: production and loss of metabolic heat in air and water. Physiological Zoology 51, 315–332.

Grant, T. R., and Temple-Smith, P. D. (1983). Size, seasonal weight change and growth in platypuses, Ornithorhynchus anatinus (Monotremata: Ornithorhynchidae), from rivers and lakes of New South Wales. Australian Mammalogy 6, 51–60.

Grant, T. R., and Temple-Smith, P. D. (1998). Field biology of the platypus (Ornithorhynchus anatinus): historical and current perspectives. Philosophical Transactions of the Royal Society: Biological Sciences 353, 1081–1091.
Field biology of the platypus (Ornithorhynchus anatinus): historical and current perspectives.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czos1Gktw%3D%3D&md5=63a82d0d62b1ac54609a38d51b376104CAS |

Griffiths, M. (1978). ‘The Biology of the Monotremes.’ (Academic Press: New York.)

Guinness, F. E., Clutton-Brock, T. H., and Albon, S. D. (1978). Factors affecting calf mortality in red deer. Journal of Animal Ecology 47, 817–832.
Factors affecting calf mortality in red deer.Crossref | GoogleScholarGoogle Scholar |

Gust, N., and Griffiths, J. (2011). Platypus (Ornithorhynchus anatinus) body size, condition and population structure in Tasmanian river catchments: variability and potential mucormycosis impacts. Wildlife Research 38, 271–289.
Platypus (Ornithorhynchus anatinus) body size, condition and population structure in Tasmanian river catchments: variability and potential mucormycosis impacts.Crossref | GoogleScholarGoogle Scholar |

Gust, N., and Handasyde, K. A. (1995). Seasonal variation in the ranging behaviour of the platypus (Ornithorhynchus anatinus) on the Goulburn River, Victoria. Australian Journal of Zoology 43, 193–208.
Seasonal variation in the ranging behaviour of the platypus (Ornithorhynchus anatinus) on the Goulburn River, Victoria.Crossref | GoogleScholarGoogle Scholar |

Gust, N., Griffiths, J., Driessen, M., Philips, A., Stewart, N. J., and Geraghty, D. (2009). Distribution, prevalence and persistence of mucormycosis in Tasmanian platypuses (Ornithorhynchus anatinus). Australian Journal of Zoology 57, 245–254.
Distribution, prevalence and persistence of mucormycosis in Tasmanian platypuses (Ornithorhynchus anatinus).Crossref | GoogleScholarGoogle Scholar |

Hafner, M. S. (1977). Density and diversity in Mojave desert rodent and shrub communities. Journal of Animal Ecology 46, 925–938.
Density and diversity in Mojave desert rodent and shrub communities.Crossref | GoogleScholarGoogle Scholar |

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005a). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |

Hijmans, R. J., Guarino, L., Jarvis, A., O’Brien, R., Mathur, P., Bussink, C., Cruz, M., Barrantes, I., and Rojas, E. (2005b). DIVA-GIS Version 5.2. Available at http://www.diva-gis.org.

Howe, C., Jones, R. N., Maheepala, S., and Rhodes, B. (2005). Melbourne Water Climate Change Study: Implications of Potential Climate Change for Melbourne’s Water Resources. In ‘A Collaborative Project between Melbourne Water and CSIRO Urban Water and Climate Impact Groups: 1–26’. (Melbourne.)

IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In ‘IPCC Fourth Assessment Report: Climate Change 2007’ . (Eds R. K. Pachauri and A. Reisinger.) (Geneva, Switzerland.)

Jones, R. N., and Durak, P. J. (2005). Estimating the impacts of climate change on Victoria’s runoff using a hydrological sensitivity model. Victorian Department of Sustainability and Environment.

Klamt, M., Thompson, R., and Davis, J. A. (2011). Early response of the platypus to climate warming. Global Change Biology 17, 3011–3018.

Knapp, A. K., Burns, C. E., Fynn, R. W. S., Kirkman, K. P., Morris, C. D., and Smith, M. D. (2006). Convergence and contingency in production–precipitation relationships in North American and South African C4 grasslands. Oecologia 149, 456–464.
Convergence and contingency in production–precipitation relationships in North American and South African C4 grasslands.Crossref | GoogleScholarGoogle Scholar |

Le Souef, A. S., and Burrell, H. (1926). ‘The Wild Animals of Australasia: Embracing the Mammals of New Guinea & the Nearer Pacific Islands.’ (Harrap: London.)

Lindsey, C. C. (1966). Body sizes of poikilotherm vertebrates at different latitudes. Evolution 20, 456–465.
Body sizes of poikilotherm vertebrates at different latitudes.Crossref | GoogleScholarGoogle Scholar |

Litzgus, J. D., DuRant, S. E., and Mousseau, T. A. (2004). Clinal variation in body and cell size in a widely distributed vertebrate ectotherm. Oecologia 140, 551–558.
Clinal variation in body and cell size in a widely distributed vertebrate ectotherm.Crossref | GoogleScholarGoogle Scholar |

Mayr, E. (1956). Geographical character gradients and climatic adaptations. Evolution 10, 105–108.
Geographical character gradients and climatic adaptations.Crossref | GoogleScholarGoogle Scholar |

McLachlan-Troup, T. A., Dickman, C. R., and Grant, T. R. (2010). Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages. Journal of Zoology 280, 237–246.
Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages.Crossref | GoogleScholarGoogle Scholar |

McNab, B. K. (1971). On the ecological significance of Bergmann’s rule. Ecology 52, 845–854.
On the ecological significance of Bergmann’s rule.Crossref | GoogleScholarGoogle Scholar |

Millar, J. S., and Hickling, G. J. (1990). Fasting endurance and the evolution of mammalian body size. Functional Ecology 4, 5–12.
Fasting endurance and the evolution of mammalian body size.Crossref | GoogleScholarGoogle Scholar |

Mitchell, B. (1984). Effects of the severe winter of 1962/63 on red deer (hinds and calves) in north-east Scotland. Deer 6, 81–84.

Morrison, P. (1960). Some interrelations between weight and hibernation function. Bulletin of the Museum of Comparative Zoology at Harvard College 124, 75–91.

Murphy, E. C. (1985). Bergmann’s rule, seasonality, and geographic variation in body size of house sparrows. Evolution 39, 1327–1334.
Bergmann’s rule, seasonality, and geographic variation in body size of house sparrows.Crossref | GoogleScholarGoogle Scholar |

Olsson Herrin, R. (2009). Distribution and individual characteristics of the platypus (Ornithorhynchus anatinus) in the Plenty River, southeast Tasmania. Masters Thesis, Lund University, Lund, Sweden.

Petraitis, P. S., Beaupre, S. J., and Dunham, A. E. (2001). ANCOVA: nonparametric and randomization approaches. In ‘Design and Analysis of Ecological Experiments’. (Eds S. M. Scheiner and J. Gurevitch.) pp. 116–133. (Oxford University Press: New York.)

Refstie, T. (1980). Genetic and environmental sources of variation in body-weight and length of rainbow-trout fingerlings. Aquaculture 19, 351–357.
Genetic and environmental sources of variation in body-weight and length of rainbow-trout fingerlings.Crossref | GoogleScholarGoogle Scholar |

Robson, B. (2008). Managing flows for ephemeral streams. Land & Water Australia, Canberra, ACT.

Rosenzweig, M. L. (1968). The strategy of body size in mammalian carnivores. American Midland Naturalist 80, 299–315.
The strategy of body size in mammalian carnivores.Crossref | GoogleScholarGoogle Scholar |

Sokal, R. R., and Rohlf, F. J. (1995). ‘Biometry: the Principles and Practice of Statistics in Biological Research.’ (W.H. Freeman and Co.: New York.)

Stearns, S. C. (1992). ‘The Evolution of Life Histories.’ (Oxford University Press: New York.)

Temple-Smith, P. D. (1973). Seasonal breeding biology of the platypus, Ornithorhynchus anatinus (Shaw, 1799), with special reference to the male. Ph.D. Thesis. Australian National University.

Tomlinson, S., and Withers, P. C. (2008). Biogeographical effects on body mass of native Australian and introduced mice, Pseudomys hermannsburgensis and Mus domesticus: an inquiry into Bergmann’s Rule. Australian Journal of Zoology 56, 423–430.
Biogeographical effects on body mass of native Australian and introduced mice, Pseudomys hermannsburgensis and Mus domesticus: an inquiry into Bergmann’s Rule.Crossref | GoogleScholarGoogle Scholar |

Tramer, E. (1977). Catastrophic mortality of stream fishes trapped in shrinking pools. American Midland Naturalist 97, 469–478.
Catastrophic mortality of stream fishes trapped in shrinking pools.Crossref | GoogleScholarGoogle Scholar |

Velasco, J., and Millan, A. (1998). Insect dispersal in a drying desert stream: effects of temperature and water loss. The Southwestern Naturalist 43, 80–87.

Weedon, M. N., Lango, H., Lindgren, C. M., Wallace, C., Evans, D., Mangino, M., Freathy, R. M., Perry, J. R., Stevens, S., Hall, A. S., Samani, N. J., Shields, B., Prokopenko, I., Farrall, M., Dominiczak, A., Initiative, D. G., Consortium, W. T. C. C., Johnson, T., Bergmann, S., Beckmann, J. S., Vollenweider, P., Waterworth, D. M., Mooser, V., Palmer, C. N., Morris, A. D., Ouwehand, W. H., Consortium, C. G., Zhao, J. H., Li, S., Loos, R. J., Barroso, I., Deloukas, P., Sandhu, M. S., Wheeler, E., Soranzo, N., Inouye, M., Wareham, N. J., Caulfield, M., Munroe, P. B., Hattersley, A. T., McCarthy, M. I., and Frayling, T. M. (2008). Genome-wide association analysis identifies 20 loci that influence adult height. Nature Genetics 40, 575–583.
Genome-wide association analysis identifies 20 loci that influence adult height.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltFylurc%3D&md5=dc3cb8e013c0d5466d2ede29f1159d05CAS |

Wigginton, J. D., and Dobson, F. S. (1999). Environmental influences on geographic variation in body size of western bobcats. Canadian Journal of Zoology 77, 802–813.
Environmental influences on geographic variation in body size of western bobcats.Crossref | GoogleScholarGoogle Scholar |

Yom-Tov, Y., and Geffen, E. (2006). Geographic variation in body size: the effects of ambient temperature and precipitation. Oecologia 148, 213–218.
Geographic variation in body size: the effects of ambient temperature and precipitation.Crossref | GoogleScholarGoogle Scholar |

Yom-Tov, Y., and Nix, H. A. (1986). Climatological correlates for body size of five species of Australian mammals. Biological Journal of the Linnean Society. Linnean Society of London 29, 245–262.
Climatological correlates for body size of five species of Australian mammals.Crossref | GoogleScholarGoogle Scholar |