Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
REVIEW

Characterisation of cellulose and hemicellulose digestion in land crabs with special reference to Gecarcoidea natalis

Benjamin J. Allardyce A B and Stuart M. Linton A
+ Author Affiliations
- Author Affiliations

A School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Geelong, Vic. 3216, Australia.

B Corresponding author. Email: ben.allardyce@deakin.edu.au

Australian Journal of Zoology 59(6) 380-391 https://doi.org/10.1071/ZO11054
Submitted: 29 July 2011  Accepted: 18 October 2011   Published: 20 March 2012

Abstract

This article reviews the current knowledge of cellulose and hemicellulose digestion by herbivorous land crabs using the gecarcinid Gecarcoidea natalis as a model species for this group. Cellulose digestion in the gecarcinids is hypothesised to require mechanical fragmentation and enzymatic hydrolysis. Mechanical fragmentation is achieved by the chelae, mandibles and gastric mill, which reduce the material to particles less than 53 µm. The gastric mill shows adaptations towards a plant diet; in particular, there are transverse ridges on the medial and lateral teeth and ventral cusps on the lateral teeth that complement and interlock to provide efficient cutting surfaces. Enzymatic hydrolysis of cellulose and hemicellulose is achieved through cellulase and hemicellulase enzymes. In the gecarcinids, 2–3 endo-β-1,4-glucanases, one β-glucohydrolase and a laminarinase have been identified. The endo-β-1,4-glucanases are multifunctional, with both endo-β-1,4-glucanase and lichenase activity. Complete cellulose hydrolysis is achieved through the synergistic action of the endo-β-1,4-glucanase and β-glucohydrolase. The evidence for the endogenous production of the cellulase and hemicellulase enzymes, their evolutionary origin and possible evolution in invertebrates as they colonised land is also discussed.


References

Allardyce, B. J., and Linton, S. M. (2008). Purification and characterisation of endo-β-1,4-glucanase and laminarinase enzymes from the gecarcinid land crab Gecarcoidea natalis and the aquatic crayfish Cherax destructor. The Journal of Experimental Biology 211, 2275–2287.
Purification and characterisation of endo-β-1,4-glucanase and laminarinase enzymes from the gecarcinid land crab Gecarcoidea natalis and the aquatic crayfish Cherax destructor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVOnsbfF&md5=03ec7793ac262ae040cc46553cba6949CAS |

Allardyce, B. J., and Linton, S. M. (2010). Functional morphology of the gastric mills of carnivorous, omnivorous, and herbivorous land crabs. Journal of Morphology 271, 61–72.
Functional morphology of the gastric mills of carnivorous, omnivorous, and herbivorous land crabs.Crossref | GoogleScholarGoogle Scholar |

Allardyce, B. J., Linton, S. M., and Saborowski, R. (2010). The last piece in the cellulase puzzle: the characterisation of β-glucosidase from the herbivorous gecarcinid land crab Gecarcoidea natalis. The Journal of Experimental Biology 213, 2950–2957.
The last piece in the cellulase puzzle: the characterisation of β-glucosidase from the herbivorous gecarcinid land crab Gecarcoidea natalis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtl2ksrjP&md5=37518cee87bf85fbcc0463f54d3072d1CAS |

Andersen, N., Johansen, K. S., Michelsen, M., Stenby, E. H., Krogh, K. B. R. M., and Olsson, L. (2008). Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme and Microbial Technology 42, 362–370.
Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitVegs7o%3D&md5=28fbaf4d4e81a4e4ca963b4eb22f2606CAS |

Bachman, E. S., and McClay, D. R. (1996). Molecular cloning of the first metazoan β-1,3 glucanase from eggs of the sea urchin Strongylocentrotus purpuratus. Proceedings of the National Academy of Sciences of the United States of America 93, 6808–6813.
Molecular cloning of the first metazoan β-1,3 glucanase from eggs of the sea urchin Strongylocentrotus purpuratus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvFeit74%3D&md5=567f35371721e211f704052ee21c78a1CAS |

Bacic, A., Harris, P. J., and Stone, B. A. (1988). Structure and function of plant cell walls. In ‘The Biochemistry of Plants. Vol. 14’. (Ed. J. Preiss.) pp. 297–319. (Academic Press, Inc.: San Diego, CA.)

Bowman, J. G., and Firkins, J. L. (1993). Effects of forage species and particle size on bacterial cellulolytic activity and colonization in situ. Journal of Animal Science 71, 1623–1633.
| 1:STN:280:DyaK3szhsFeqsA%3D%3D&md5=3f490e67efa49f064bff286bcc730a53CAS |

Brett, C. T. (2000). Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall. International Review of Cytology 199, 161–199.
Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell wall.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltFKgsb8%3D&md5=2560c3fddcae492c63c7d9a105c118d9CAS |

Brösing, A., Richter, S., and Scholtz, G. (2002). The foregut–ossicle system of Dromia wilsoni, Dromia personata and Lauridromia intermedia (Decapoda, Brachyura, Dromiidae), studied with a new staining method. Arthropod Structure & Development 30, 329–338.
The foregut–ossicle system of Dromia wilsoni, Dromia personata and Lauridromia intermedia (Decapoda, Brachyura, Dromiidae), studied with a new staining method.Crossref | GoogleScholarGoogle Scholar |

Bull, A. T., and Chesters, C. G. C. (1966). The biochemistry of laminarin and the nature of laminarinase. Advances in Enzymology and Related Areas of Molecular Biology 28, 325–364.
| 1:CAS:528:DC%2BD1cXms1anu7o%3D&md5=7b6f36f9bf608f9e0a4d2e69bfb7ca5dCAS |

Byrne, K. A., Lehnert, S. A., Johnson, S. E., and Moore, S. S. (1999). Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene 239, 317–324.
Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVSntrc%3D&md5=19753c46e306ec5597eef6c252409f9aCAS |

Ceccaldi, H. J. (1998). A synopsis of the morphology and physiology of the digestive system of some crustacean species studied in France. Reviews in Fisheries Science 6, 13–39.
A synopsis of the morphology and physiology of the digestive system of some crustacean species studied in France.Crossref | GoogleScholarGoogle Scholar |

Chamier, A.-C. (1991). Cellulose digestion and metabolism in the freshwater amphipod Gammarus pseudolimnaeus Bousfield. Freshwater Biology 25, 33–40.
Cellulose digestion and metabolism in the freshwater amphipod Gammarus pseudolimnaeus Bousfield.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFWjtL8%3D&md5=f5aa6e0450b6accbedc66369b58608a0CAS |

Coutinho, P. M., Deleury, E., Davies, G. J., and Henrissat, B. (2003). An evolving hierarchical family classification for glycosyltransferases. Journal of Molecular Biology 328, 307–317.
An evolving hierarchical family classification for glycosyltransferases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXislehtr4%3D&md5=fbdca1d8636271e107b63def587134deCAS |

Crawford, A. C., Kricker, J. A., Anderson, A. J., Richardson, N. A., and Mather, P. B. (2004). Structure and function of a cellulase gene in redclaw crayfish Cherax quadricarinatus. Gene 340, 267–274.
Structure and function of a cellulase gene in redclaw crayfish Cherax quadricarinatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1yjs7s%3D&md5=853739006a021313379698d75d3f43b0CAS |

Crawford, A. C., Richardson, N. R., and Mather, P. B. (2005). A comparative study of cellulase and xylanase activity in freshwater crayfish and marine prawns. Aquaculture and Research 36, 586–592.
A comparative study of cellulase and xylanase activity in freshwater crayfish and marine prawns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksValu7g%3D&md5=abdbc78713ffe7c8da17d02c87a337d4CAS |

Dall, W., and Moriarty, D. J. (1983). Functional aspects of nutrition and digestion. In ‘Internal Anatomy and Physiological Regulation’. (Ed. L. H. Mantel.) pp. 215–261. (Academic Press: New York.)

Davison, A., and Blaxter, M. (2005). Ancient origin of glycosyl hydrolase family 9 cellulase genes. Molecular Biology and Evolution 22, 1273–1284.
Ancient origin of glycosyl hydrolase family 9 cellulase genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVKitbc%3D&md5=3818da4da2ca4aefac4e3db3d35754c1CAS |

Doblin, M. S., Pettolino, F., and Bacic, A. (2010). Plant cell walls: the skeleton of the plant world. Functional Plant Biology 37, 357–381.
Plant cell walls: the skeleton of the plant world.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsFKmsr4%3D&md5=58947d39964a97d177938225b117bb6fCAS |

Eggleton, P. (2006). The termite gut habitat: its evolution and co-evolution. In ‘Intestinal Microorganisms of Termites and Other Invertebrates. Vol. 6’. (Eds H. König and A. Varma.) pp. 373–404. (Springer: Berlin.)

Felgenhauer, B. E. (1992). Internal anatomy of the decapoda: an overview. In ‘Decapod Crustacea’. (Ed. F. W. Harrison.) pp. 45–75. (Wiley-Liss: New York.)

Giddins, R. L., Lucas, J. S., Neilson, M. J., and Richards, G. N. (1986). Feeding ecology of the mangrove crab Neosarmatium smithi (Crustacea: Decapoda: Sesarmidae). Marine Ecology Progress Series 33, 147–155.
Feeding ecology of the mangrove crab Neosarmatium smithi (Crustacea: Decapoda: Sesarmidae).Crossref | GoogleScholarGoogle Scholar |

Graham, L. E., Cook, M. E., and Busse, J. S. (2000). The origin of plants: body plan changes contributing to a major evolutionary radiation. Proceedings of the National Academy of Sciences of the United States of America 97, 4535–4540.
The origin of plants: body plan changes contributing to a major evolutionary radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivFKjsbg%3D&md5=d81da529f9d079b1970e8c8ca92d51aaCAS |

Greenaway, P. (1998). The Crustacea. In ‘Invertebrate Zoology’. (Ed. D. T. Anderson.) pp. 286–318. (Oxford University Press: Melbourne.)

Greenaway, P., and Linton, S. M. (1995). Dietary assimilation and food retention time in the herbivorous terrestrial crab Gecarcoidea natalis. Physiological Zoology 68, 1006–1028.

Greenaway, P., and Raghaven, S. (1998). Digestive strategies in two species of leaf-eating land crabs (Brachyura: Gecarcinidae) in a rain forest. Physiological Zoology 71, 36–44.
Digestive strategies in two species of leaf-eating land crabs (Brachyura: Gecarcinidae) in a rain forest.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7jt1WmsQ%3D%3D&md5=5fe4bf90a6b02ce4ffe66c215f372efdCAS |

Heinzel, H.-G. (1988). Gastric mill activity in the lobster. I. Spontaneous modes of chewing. Journal of Neurophysiology 59, 528–550.
| 1:STN:280:DyaL1c7ntFKmtA%3D%3D&md5=beec099a8afb914624616a03613db32fCAS |

Heinzel, H.-G., Weimann, J. M., and Marder, E. (1993). The behavioral repertoire of the gastric mill in the crab, Cancer pagurus: an in situ endoscopic and electrophysiological examination. The Journal of Neuroscience 13, 1793–1803.
| 1:STN:280:DyaK3s3hslGmug%3D%3D&md5=fb5f502dc51b24136de5cee83480d7aaCAS |

Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 280, 309–316.
| 1:CAS:528:DyaK3MXmslCmu78%3D&md5=6f277bdd587832d5d9dcafb23f29b7c8CAS |

Henrissat, B., and Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 293, 781–788.
| 1:CAS:528:DyaK3sXmt1Sgu70%3D&md5=c915b508fe6df7aeb81826508456f5dbCAS |

Henrissat, B., and Bairoch, A. (1996). Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal 316, 695–696.

Henrissat, B., and Davies, G. (1997). Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology 7, 637–644.
Structural and sequence-based classification of glycoside hydrolases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmvVGgtb8%3D&md5=743df477251076353a57190e12f68f74CAS |

Hogan, M. E., Schulz, M. W., Slaytor, M., Czolij, R. T., and O’Brien, R. W. (1988). Components of termite and protozoal cellulases from the lower termite, Coptotermes lacteus Froggatt. Insect Biochemistry 18, 45–51.
Components of termite and protozoal cellulases from the lower termite, Coptotermes lacteus Froggatt.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXptVKisg%3D%3D&md5=a387b3c1c78b4337d65b01e5d25937caCAS |

Hrmova, M., and Fincher, G. B. (2001). Structure–function relationships of β-d-glucan endo- and exohydrolases from higher plants. Plant Molecular Biology 47, 73–91.
Structure–function relationships of β-d-glucan endo- and exohydrolases from higher plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmslGmsLc%3D&md5=b8a2892f3413fc8e4a4f58aa126a725bCAS |

Icely, J. D., and Nott, J. A. (1992). Digestion and absorption: digestive system and associated organs. In ‘Decapod Crustacea. Vol. 10’. (Eds F. W. Harrison and A. G. Humes.) pp. 147–201. (Wiley-Liss: New York.)

Jeoh, T., Ishizawa, C. I., Davis, M. F., Himmel, M. E., Adney, W. S., and Johnson, D. K. (2007). Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnology and Bioengineering 98, 112–122.
Cellulase digestibility of pretreated biomass is limited by cellulose accessibility.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlSjsbs%3D&md5=4ccdeaf35b535c56845cc75e8e98fc0dCAS |

Johnston, D. J., and Alexander, C. G. (1999). Functional morphology of the mouthparts and alimentary tract of the slipper lobster Thenus orientalis (Decapoda: Scyllaridae). Marine and Freshwater Research 50, 213–223.
Functional morphology of the mouthparts and alimentary tract of the slipper lobster Thenus orientalis (Decapoda: Scyllaridae).Crossref | GoogleScholarGoogle Scholar |

Kikuchi, T., Jones, J. T., Aikawa, T., Kosaka, H., and Ogura, N. (2004). A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Letters 572, 201–205.
A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVGhtr0%3D&md5=3a0a5700a859c97814af8275a9d6f622CAS |

Kostanjšek, R., Milatovič, M., and Štrus, J. (2010). Endogenous origin of endo-β-1,4-glucanase in common woodlouse Porcellio scaber (Crustacea, Isopoda). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 180, 1143–1153.
Endogenous origin of endo-β-1,4-glucanase in common woodlouse Porcellio scaber (Crustacea, Isopoda).Crossref | GoogleScholarGoogle Scholar |

Kozhemyako, V. B., Rebrikov, D. V., Lukyanov, S. A., Bogdanova, E. A., Marin, A., Mazur, A. K., Kovalchuk, S. N., Agafonova, E. V., Sova, V. V., Elyakova, L. A., and Rasskazov, V. A. (2004). Molecular cloning and characterization of an endo-1,3-β-d-glucanase from the mollusk Spisula sachalinensis. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 137, 169–178.
Molecular cloning and characterization of an endo-1,3-β-d-glucanase from the mollusk Spisula sachalinensis.Crossref | GoogleScholarGoogle Scholar |

Kumagai, Y., and Ojima, T. (2009). Enzymatic properties and the primary structure of a β-1,3-glucanase from the digestive fluid of the Pacific abalone Haliotis discus hannai. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 154, 113–120.
Enzymatic properties and the primary structure of a β-1,3-glucanase from the digestive fluid of the Pacific abalone Haliotis discus hannai.Crossref | GoogleScholarGoogle Scholar |

Kunze, J., and Anderson, D. T. (1979). Functional morphology of the mouthparts and gastric mill in the hermit crabs Clibanarius taeniatus (Milne Edwards), Clibanarius virescens (Krauss), Paguristes squamosus McCulloch and Dardanus setifer (Milne-Edwards) (Anomura: Paguridae). Australian Journal of Marine and Freshwater Research 30, 683–722.
Functional morphology of the mouthparts and gastric mill in the hermit crabs Clibanarius taeniatus (Milne Edwards), Clibanarius virescens (Krauss), Paguristes squamosus McCulloch and Dardanus setifer (Milne-Edwards) (Anomura: Paguridae).Crossref | GoogleScholarGoogle Scholar |

Latgé, J.-P. (2007). The cell wall: a carbohydrate armour for the fungal cell. Molecular Microbiology 66, 279–290.
The cell wall: a carbohydrate armour for the fungal cell.Crossref | GoogleScholarGoogle Scholar |

Lee, S. J., Kim, S. R., Yoon, H. J., Kim, I., Lee, K. S., Je, Y. H., Lee, S. M., Seo, S. J., Dae Sohn, H., and Jin, B. R. (2004). cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 139, 107–116.
cDNA cloning, expression, and enzymatic activity of a cellulase from the mulberry longicorn beetle, Apriona germari.Crossref | GoogleScholarGoogle Scholar |

Lépagnol-Descamps, V., Richard, C., Lahaye, M., Potin, P., Yvin, J.-C., and Kloareg, B. (1998). Purification and determination of the action pattern of Haliotis tuberculata laminarinase. Carbohydrate Research 310, 283–289.
Purification and determination of the action pattern of Haliotis tuberculata laminarinase.Crossref | GoogleScholarGoogle Scholar |

Li, Y.-H., Guo, R., Yin, Q.-Y., Ding, M., Zhang, S.-L., Xu, G.-J., and Zhao, F.-K. (2005). Purification and characterization of two endo-β-1,4-glucanases from Mollusca, Ampullaria crossean. Acta Biochimica et Biophysica Sinica 37, 702–708.
Purification and characterization of two endo-β-1,4-glucanases from Mollusca, Ampullaria crossean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1SisLnJ&md5=2d979baa80945997554355ccc9159b40CAS |

Linton, S. M., and Greenaway, P. (2004). Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes. The Journal of Experimental Biology 207, 4095–4104.
Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXls1KjtA%3D%3D&md5=474e38360b260465821236de785ac5d1CAS |

Linton, S. M., and Greenaway, P. (2007). A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 177, 269–286.
A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets.Crossref | GoogleScholarGoogle Scholar |

Linton, S. M., and Shirley, A. J. (2011). Isozymes from the herbivorous gecarcinid land crab, Gecarcoidea natalis that possess both lichenase and endo-[beta]-1,4-glucanase activity. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 160, 44–53.
Isozymes from the herbivorous gecarcinid land crab, Gecarcoidea natalis that possess both lichenase and endo-[beta]-1,4-glucanase activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXos1yns7o%3D&md5=7d0582ae018ff6fe14c4e0372ba49072CAS |

Linton, S. M., Greenaway, P., and Towle, D. W. (2006). Endogenous production of endo-β-1,4-glucanase by decapod crustaceans. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 176, 339–348.
Endogenous production of endo-β-1,4-glucanase by decapod crustaceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtlCitrs%3D&md5=11614318aed889aef7cd0350716015ddCAS |

Linton, S., Allardyce, B., Hagen, W., Wencke, P., and Saborowski, R. (2009). Food utilisation and digestive ability of aquatic and semi-terrestrial crayfishes, Cherax destructor and Engaeus sericatus (Astacidae, Parastacidae). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 179, 493–507.
Food utilisation and digestive ability of aquatic and semi-terrestrial crayfishes, Cherax destructor and Engaeus sericatus (Astacidae, Parastacidae).Crossref | GoogleScholarGoogle Scholar |

Lo, N., Watanabe, H., and Sugimura, M. (2003). Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proceedings of the Royal Society of London B (Supplement) 270, S67–S72.

Lo, N., Tokuda, G., and Watanabe, H. (2011). Evolution and function of endogenous termite cellulases. In ‘Biology of Termites: a Modern Synthesis’. (Eds D. E. Bignell, Y. Roisin and N. Lo.) pp. 51–67. (Springer: The Netherlands.)

López-Victoria, M., and Werding, B. (2008). Ecology of the endemic land crab Johngarthia malpilensis (Decapoda: Brachyura: Gecarcinidae), a poorly known species from the tropical eastern Pacific. Pacific Science 62, 483–493.
Ecology of the endemic land crab Johngarthia malpilensis (Decapoda: Brachyura: Gecarcinidae), a poorly known species from the tropical eastern Pacific.Crossref | GoogleScholarGoogle Scholar |

Martin, M. M. (1991). The evolution of cellulose digestion in insects. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 333, 281–288.
The evolution of cellulose digestion in insects.Crossref | GoogleScholarGoogle Scholar |

Mocquard, F. (1883). Recherches anatomiques sur l’estomac des crustacés podophthalmaires. Annales Sciences Naturelles 16, 1–311.

Nakamura, K., and Takemoto, T. (1986). Morphology of stomach ossicles in Brachyura. Memoirs of the Faculty of Fisheries, Kagoshima University 35, 7–15.

Nakashima, K., Watanabe, H., Saitoh, H., Tokuda, G., and Azuma, J.-I. (2002). Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochemistry and Molecular Biology 32, 777–784.
Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XktVGjsL0%3D&md5=6c343d45c3f20f72650fe70e19c979baCAS |

Nishiyama, Y., Langan, P., and Chanzy, H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society 124, 9074–9082.
Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xlt1eqsLk%3D&md5=e4ec6b790c4dccc225bf628dd5dac735CAS |

Nishiyama, Y., Sugiyama, J., Chanzy, H., and Langan, P. (2003). Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society 125, 14 300–14 306.
Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslWhsr4%3D&md5=20924a0ac23338db6ff5f951c2ac8378CAS |

Nothnagel, A. L., and Nothnagel, E. A. (2007). Primary cell wall structure in the evolution of land plants. Journal of Integrative Plant Biology 49, 1271–1278.
Primary cell wall structure in the evolution of land plants.Crossref | GoogleScholarGoogle Scholar |

Pesentseva, M. S., Kusaykin, M. I., Anastyuk, S. D., Sova, V. V., and Zvyagintseva, T. N. (2008). Catalytic properties and mode of action of endo-(1→3)-β-d-glucanase and β-d-glucosidase from the marine mollusk Littorina kurila. Carbohydrate Research 343, 2393–2400.
Catalytic properties and mode of action of endo-(1→3)-β-d-glucanase and β-d-glucosidase from the marine mollusk Littorina kurila.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCgurrK&md5=ae66837b1e8af50dcfe45122c11c517fCAS |

Piavaux, A. (1977). Distribution and localization of the digestive laminarinases in animals. Biochemical Systematics and Ecology 5, 231–239.
Distribution and localization of the digestive laminarinases in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhslOqtw%3D%3D&md5=4a7582c05c1b896c158e193c4cc331a6CAS |

Planas, A. (2000). Bacterial 1,3–1,4-β-glucanases: structure, function and protein engineering. Biochimica et Biophysica Acta (BBA) – Protein Structure and Molecular Enzymology 1543, 361–382.
Bacterial 1,3–1,4-β-glucanases: structure, function and protein engineering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitl2ksg%3D%3D&md5=46b12948b24447684fa736a117b177d8CAS |

Ruiz-Herrera, J. (1992). ‘Fungal cell wall: structure, synthesis, and Assembly.’ (CRC Press: London.)

Sakamoto, K., and Toyohara, H. (2009a). A comparative study of cellulase and hemicellulase activities of brackish water clam Corbicula japonica with those of other marine Veneroida bivalves. The Journal of Experimental Biology 212, 2812–2818.
A comparative study of cellulase and hemicellulase activities of brackish water clam Corbicula japonica with those of other marine Veneroida bivalves.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlSjtbvL&md5=fc93ce65282ba1f616d9e78e04a7b828CAS |

Sakamoto, K., and Toyohara, H. (2009b). Molecular cloning of glycoside hydrolase family 45 cellulase genes from brackish water clam Corbicula japonica. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 152, 390–396.
Molecular cloning of glycoside hydrolase family 45 cellulase genes from brackish water clam Corbicula japonica.Crossref | GoogleScholarGoogle Scholar |

Sakamoto, K., Touhata, K., Yamashita, M., Kasai, A., and Toyohara, H. (2007). Cellulose digestion by common Japanese freshwater clam Corbicula japonica. Fisheries Science 73, 675–683.
Cellulose digestion by common Japanese freshwater clam Corbicula japonica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlGit7c%3D&md5=822376635575e2ff2c6435d4aa25f101CAS |

Sakamoto, K., Uji, S., Kurokawa, T., and Toyohara, H. (2009). Molecular cloning of endogenous β-glucosidase from common Japanese brackish water clam Corbicula japonica. Gene 435, 72–79.
Molecular cloning of endogenous β-glucosidase from common Japanese brackish water clam Corbicula japonica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjtFantL4%3D&md5=a048c91c8ec1ae6b8a345d175d0ef8fcCAS |

Salindeho, I. R., and Johnston, D. J. (2003). Functional morphology of the mouthparts and proventriculus of the rock crab Nectocarcinus tuberculosus (Decapoda: Portunidae). Journal of the Marine Biological Association of the United Kingdom 83, 821–834.
Functional morphology of the mouthparts and proventriculus of the rock crab Nectocarcinus tuberculosus (Decapoda: Portunidae).Crossref | GoogleScholarGoogle Scholar |

Schaefer, N. (1970). The functional morphology of the fore-gut of three species of decapod crustacea: Cyclograpsus punctatus Milne-Edwards, Diogenes brevirostris Stimpson, and Upogebia africana (Ortmann). Zoologica Africa 5, 309–326.

Scrivener, A. M., and Slaytor, M. (1994). Properties of the endogenous cellulase from Panesthia cribrata Saussure and purification of major endo-β-1,4-glucanase components. Insect Biochemistry and Molecular Biology 24, 223–231.
Properties of the endogenous cellulase from Panesthia cribrata Saussure and purification of major endo-β-1,4-glucanase components.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVals74%3D&md5=dc91cf228b2ce0c9cfbb7f2cccdc0b1cCAS |

Siegel, B. Z., and Siegel, S. M. (1973). The chemical composition of algal cell walls. Critical Reviews in Microbiology 3, 1–26.
The chemical composition of algal cell walls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXkt1Gjs7Y%3D&md5=3abb0895fa961670c3b11a0c5ac40e15CAS |

Song, J. M., Nam, K., Sun, Y.-U., Kang, M. H., Kim, C.-G., Kwon, S.-T., Lee, J., and Lee, Y.-H. (2010). Molecular and biochemical characterizations of a novel arthropod endo-β-1,3-glucanase from the Antarctic springtail, Cryptopygus antarcticus, horizontally acquired from bacteria. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 155, 403–412.
Molecular and biochemical characterizations of a novel arthropod endo-β-1,3-glucanase from the Antarctic springtail, Cryptopygus antarcticus, horizontally acquired from bacteria.Crossref | GoogleScholarGoogle Scholar |

Sugimura, M., Watanabe, H., Lo, N., and Saito, H. (2003). Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. European Journal of Biochemistry 270, 3455–3460.
Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvFWktb0%3D&md5=8f52dfc835d16b20231a5233eff862a3CAS |

Taylor, H. H., and Greenaway, P. (2002). Osmoregulation in the terrestrial Christmas Island red crab Gecarcoidea natalis (Brachyura: Gecarcinidae): modulation of branchial chloride uptake from the urine. The Journal of Experimental Biology 205, 3251–3260.
| 1:CAS:528:DC%2BD38XptV2mu7k%3D&md5=14cbc134ef9fa93400375a112cab420dCAS |

Terra, W. R., and Ferreira, C. (1994). Insect digestive enzymes: properties, compartmentalization and function. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 109, 1–62.
Insect digestive enzymes: properties, compartmentalization and function.Crossref | GoogleScholarGoogle Scholar |

Tvaroska, I., Ogawa, K., Deslandes, Y., and Marchessault, R. H. (1983). Crystalline conformation and structure of lichenan and barley β-glucan. Canadian Journal of Chemistry 61, 1608–1616.
Crystalline conformation and structure of lichenan and barley β-glucan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlt1arsr8%3D&md5=60f7bd308b6d9ed1a3bda29993db6964CAS |

Walker, L. P., and Wilson, D. B. (1991). Enzymatic hydrolysis of cellulose: an overview. Bioresource Technology 36, 3–14.
Enzymatic hydrolysis of cellulose: an overview.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xhslahu7w%3D&md5=68b9fe3d1c9f392b60077012179fc1daCAS |

Warner, G. F. (1977). ‘The Biology of Crabs.’ (Elek: London.)

Warren, R. A. J. (1996). Microbial hydrolysis of polysaccharides. Annual Review of Microbiology 50, 183–212.
Microbial hydrolysis of polysaccharides.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmtFGhsbw%3D&md5=389121eaa3d5f6613c1035a9d90aa8ccCAS |

Watanabe, H., and Tokuda, G. (2001). Animal cellulases. Cellular and Molecular Life Sciences 58, 1167–1178.
Animal cellulases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt12gsLc%3D&md5=64d1f4728cf1692b688eaaa9f9283cdeCAS |

Watanabe, H., and Tokuda, G. (2010). Cellulolytic systems in insects. Annual Review of Entomology 55, 609–632.
Cellulolytic systems in insects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVSgtA%3D%3D&md5=a3d8cf55c32cae41080ecf473680d16bCAS |

Wolcott, D. L., and Wolcott, T. G. (1984). Food quality and cannibalism in the red land crab, Gecarcinus lateralis. Physiological Zoology 57, 318–324.

Wolcott, D. L., and Wolcott, T. G. (1987). Nitrogen limitation in the herbivorous land crab Cardisoma guanhumi. Physiological Zoology 60, 262–268.

Xu, B., Janson, J.-C., and Sellos, D. (2001). Cloning and sequencing of a molluscan endo-β-1,4-glucanase gene from the blue mussel, Mytilus edulis. European Journal of Biochemistry 268, 3718–3727.
Cloning and sequencing of a molluscan endo-β-1,4-glucanase gene from the blue mussel, Mytilus edulis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXltVems70%3D&md5=953104834c274221214537ecbbf2252cCAS |

Xue, X. M., Anderson, A. J., Richardson, N. A., Anderson, A. J., Xue, G. P., and Mather, P. B. (1999). Characterisation of cellulase activity in the digestive system of the redclaw crayfish (Cherax quadricarinatus). Aquaculture 180, 373–386.
Characterisation of cellulase activity in the digestive system of the redclaw crayfish (Cherax quadricarinatus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsVWmu70%3D&md5=4411bea7edad942cfd69b9090a8498aaCAS |

Zimmer, M. (2002). Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary–ecological approach. Biological Reviews of the Cambridge Philosophical Society 77, 455–493.
Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary–ecological approach.Crossref | GoogleScholarGoogle Scholar |

Zimmer, M., and Bartholmé, S. (2003). Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion. Limnology and Oceanography 48, 2208–2213.
Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion.Crossref | GoogleScholarGoogle Scholar |

Zimmer, M., and Topp, W. (1998). Do woodlice (Isopoda: Oniscidea) produce endogenous cellulases? Biology and Fertility of Soils 26, 155–156.
Do woodlice (Isopoda: Oniscidea) produce endogenous cellulases?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXnvVensrg%3D&md5=1ddcbda6ac8062ec544490b5d7ac81eaCAS |

Zimmer, M., Danko, J. P., Pennings, S. C., Danford, A. R., Carefoot, T. H., Ziegler, A., and Uglow, R. F. (2002). Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Marine Biology 140, 1207–1213.
Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmtF2isbw%3D&md5=5879404f296b751365d5225eca862907CAS |