Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Genetic diversity and biogeographic history inform future conservation management strategies for the rare sunset frog (Spicospina flammocaerulea)

D. L. Edwards A B C and J. D. Roberts A
+ Author Affiliations
- Author Affiliations

A School of Animal Biology M092, The University of Western Australia, Crawley, WA 6009, Australia.

B Present address: Museum of Zoology, The University of Michigan, Ann Arbor, MI 48109-1079, USA.

C Corresponding author. Email: daned@umich.edu

Australian Journal of Zoology 59(2) 63-72 https://doi.org/10.1071/ZO11005
Submitted: 29 January 2011  Accepted: 27 June 2011   Published: 10 October 2011

Abstract

Outlining the distribution of genetic variation, patterns of gene flow and clarifying the biogeographic processes underlying population history are critical components of a comprehensive conservation strategy for endangered or vulnerable species. We provide this information for the vulnerable sunset frog (Spicospina flammocaerulea) using a comprehensive genetic dataset (ND2) with samples from 17 of 22 geographic localities where this species has been found. From genetic, biogeographic and coalescent-based analyses, we document the existing genetic variation, likely movement patterns and explore the biogeographic history of S. flammocaerulea. While catchment-based genetic variation is well documented in other high-rainfall taxa in south-western Australia, a much more complex scenario including dispersal across ridge lines between catchments better explains the distribution of genetic variation and observed patterns of gene flow in S. flammocaerulea. The population history of S. flammocaerulea is strongly indicative of recent population contraction and expansion, which may be related to late Pleistocene climate fluctuations. This suggests that this species can adapt or move in response to fluctuating climates provided suitable habitats or expansion areas are available. However, like many other endemic taxa with limited geographic ranges in south-western Australia, the potential to shift distributions is hampered by being land-locked within an agricultural landscape, limiting management options in the face of climate change.

Additional keywords: conservation, phylogeography, population genetics, south-western Australia.


References

Bamford, M. J., and Roberts, J. D. (2003). The impact of fire on frogs and reptiles in south-western Australia. In ‘Fire in Ecosystems of South-west Western Australia: Impacts and Management’. (Eds I. Abbott and N. Burrows.) pp. 349–361. (Backhuys Publishers: Leiden, The Netherlands.)

Behrman, K. D., and Kirkpatrick, M. (2011). Species range expansion by beneficial mutations. Journal of Evolutionary Biology 24, 665–675.
Species range expansion by beneficial mutations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3gtFehug%3D%3D&md5=b7209e3c6efe3d513d6e20a8cdd4df64CAS |

Broadhurst, L., Byrne, M., Craven, L., and Lepschi, B. (2004). Genetic congruence with new species boundaries in the Melaleuca uncinata complex (Myrtaceae). Australian Journal of Botany 52, 729–737.
Genetic congruence with new species boundaries in the Melaleuca uncinata complex (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Bromham, L., and Penny, D. (2003). The modern molecular clock. Nature Reviews. Genetics 4, 216–224.
The modern molecular clock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsFWqt7w%3D&md5=7772f3cfe8497f8062e53c9d3ba109c3CAS |

Burbidge, A. A., and Roberts, J. D. (2001). Sunset Frog Recovery Plan. Page 8. The Department of Conservation and Land Management, Perth.

Byrne, M., and Hines, B. (2004). Phylogeographical analysis of cpDNA variation in Eucalyptus loxophleba (Myrtaceae). Australian Journal of Botany 52, 459–470.
Phylogeographical analysis of cpDNA variation in Eucalyptus loxophleba (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVChtLk%3D&md5=fe9325289aceab89565699c404bdfe77CAS |

Byrne, M., and Macdonald, B. (2000). Phylogeography and conservation of three oil mallee taxa, Eucalyptus kochii ssp. kochii, ssp. plenissima and E. horistes. Australian Journal of Botany 48, 305–312.
Phylogeography and conservation of three oil mallee taxa, Eucalyptus kochii ssp. kochii, ssp. plenissima and E. horistes.Crossref | GoogleScholarGoogle Scholar |

Byrne, M., Macdonald, B., and Brand, J. (2003a). Phylogeography and divergence in the chloroplast genome of Western Australian sandalwood (Santalum spicatum). Heredity 91, 389–395.
Phylogeography and divergence in the chloroplast genome of Western Australian sandalwood (Santalum spicatum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsF2msbY%3D&md5=9ae7623d8aa2fce918e7d3665251b852CAS |

Byrne, M., MacDonald, B., Broadhurst, L., and Brand, J. (2003b). Regional genetic differentiation in Western Australian sandalwood (Santalum spicatum) as revealed by nuclear RFLP analysis. Theoretical and Applied Genetics 107, 1208–1214.
Regional genetic differentiation in Western Australian sandalwood (Santalum spicatum) as revealed by nuclear RFLP analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXos1Okuro%3D&md5=91f5feab6877e287868959b001ab6018CAS |

Byrne, M., Yeats, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K. -H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=383a6dbca041980a7dc45069fb7940cdCAS |

Coates, D. J., and Hamley, V. L. (1999). Genetic divergence and the mating system in the endangered and geographically restricted species, Lambertia orbifolia Gardner (Proteaceae). Heredity 83, 418–427.
Genetic divergence and the mating system in the endangered and geographically restricted species, Lambertia orbifolia Gardner (Proteaceae).Crossref | GoogleScholarGoogle Scholar |

Coates, D. J., Carstairs, S., and Hamley, V. L. (2003). Evolutionary patterns and genetic structure in localized and widespread species in the Stylidium caricifolium complex (Stylidiaceae). American Journal of Botany 90, 997–1008.
Evolutionary patterns and genetic structure in localized and widespread species in the Stylidium caricifolium complex (Stylidiaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFCnu7o%3D&md5=22754e50a85b81b61d0a3b8ed787c845CAS |

Conroy, S. D. S., and Brook, B. W. (2003). Demographic sensitivity and persistence of the threatened white- and orange-bellied frogs of Western Australia. Population Ecology 45, 105–114.
Demographic sensitivity and persistence of the threatened white- and orange-bellied frogs of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Crawford, A. J. (2003). Huge populations and old species of Costa Rican and Panamanian dirt frogs inferred from mitochondrial and nuclear gene sequences. Molecular Ecology 12, 2525–2540.
Huge populations and old species of Costa Rican and Panamanian dirt frogs inferred from mitochondrial and nuclear gene sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Kqtbk%3D&md5=2145b907883e4d1ed45fa355697d0720CAS |

Crawford, A. J., and Smith, E. N. (2005). Cenozoic biogeography and evolution in direct-developing frogs of central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 35, 536–555.
Cenozoic biogeography and evolution in direct-developing frogs of central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjvVKrsL0%3D&md5=33a4c421552fb95936eab8da4df11a61CAS |

Davis, R. A., and Roberts, J. D. (2005). Population genetic structure of the western spotted frog, Heleioporus albopunctatus (Anura: Myobatrachidae), in a fragmented landscape in south-western Australia. Australian Journal of Zoology 53, 167–175.
Population genetic structure of the western spotted frog, Heleioporus albopunctatus (Anura: Myobatrachidae), in a fragmented landscape in south-western Australia.Crossref | GoogleScholarGoogle Scholar |

De Boer, T., Subia, M. D., Ambariyanto, , Erdmann, M. V., Kovitvingsa, K., and Barber, P. H. (2008). Phylogeography and limited genetic connectivity in the endangered boring giant clam across the Coral Triangle. Conservation Biology 22, 1255–1266.
Phylogeography and limited genetic connectivity in the endangered boring giant clam across the Coral Triangle.Crossref | GoogleScholarGoogle Scholar |

Driscoll, D. A. (1998a). Genetic structure of the frogs Geocrinia lutea and Geocrinia rosea reflects extreme population divergence and range changes, not dispersal barriers. Evolution 52, 1147–1157.
Genetic structure of the frogs Geocrinia lutea and Geocrinia rosea reflects extreme population divergence and range changes, not dispersal barriers.Crossref | GoogleScholarGoogle Scholar |

Driscoll, D. A. (1998b). Genetic structure, metapopulation processes and evolution influence the conservation strategies for two endangered frog species. Biological Conservation 83, 43–54.
Genetic structure, metapopulation processes and evolution influence the conservation strategies for two endangered frog species.Crossref | GoogleScholarGoogle Scholar |

Driscoll, D. A., and Roberts, J. D. (2008). A hybrid zone defined by allozymes and ventral colour in Geocrinia rosea (Anura: Myobatrachidae). Australian Journal of Zoology 55, 371–376.
A hybrid zone defined by allozymes and ventral colour in Geocrinia rosea (Anura: Myobatrachidae).Crossref | GoogleScholarGoogle Scholar |

Dziminski, M. A., Anstis, M., and Lannoo, M. J. (2004). Embryonic and larval development of the sunset frog, Spicospina flammocaerulea (Anura: Myobatrachidae), from southwestern Australia. Copeia 2004, 896–902.
Embryonic and larval development of the sunset frog, Spicospina flammocaerulea (Anura: Myobatrachidae), from southwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Eckert, C. G., Samis, E., and Lougheed, S. C. (2008). Genetic variation across species’ geographic ranges: the central–marginal hypothesis and beyond. Molecular Ecology 17, 1170–1188.
Genetic variation across species’ geographic ranges: the central–marginal hypothesis and beyond.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksFShsbc%3D&md5=95333b282653d7df3f2c24680fb8915cCAS |

Edwards, D. L. (2007a). Biogeography and speciation of a direct developing frog from the coastal arid zone of Western Australia. Molecular Phylogenetics and Evolution 45, 494–505.
Biogeography and speciation of a direct developing frog from the coastal arid zone of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Edwards, D. L. (2007b). Biogeography and speciation of south-western Australian frogs. Ph.D. Thesis, The University of Western Australia, Perth.

Edwards, D. L., Roberts, J. D., and Keogh, J. S. (2007). Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog. Molecular Ecology 16, 2782–2796.
Impact of Plio-Pleistocene arid cycling on the population history of a southwestern Australian frog.Crossref | GoogleScholarGoogle Scholar |

Edwards, D. L., Roberts, J. D., and Keogh, J. S. (2008). Climatic fluctuations shape the phylogeography of a mesic direct developing frog from the south-western Australian biodiversity hotspot. Journal of Biogeography 35, 1803–1815.
Climatic fluctuations shape the phylogeography of a mesic direct developing frog from the south-western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Excoffier, L. (2004). Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite island model. Molecular Ecology 13, 853–864.
Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite island model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtFKnsL4%3D&md5=cdc5be68c5e4a745f91179c551a87f50CAS |

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver.3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=e68253d07020c121048948a7c143bc1aCAS |

Garrick, R. C., Sands, C. J., Rowell, D. M., Hillis, D. M., and Sunnucks, P. (2007). Catchments catch all: long-term population history of a giant springtail from the southeast Australian highlands; a multigene approach. Molecular Ecology 16, 1865–1882.
Catchments catch all: long-term population history of a giant springtail from the southeast Australian highlands; a multigene approach.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s3js1Gjug%3D%3D&md5=7c605915e8910bd2480f4c3e0f0812cdCAS |

Gouws, G., Stewart, B. A., and Daniels, S. R. (2006). Phylogeographic structure of a freshwater crayfish (Decapoda: Parastacidae: Cherax preissii) in south-western Australia. Marine and Freshwater Research 57, 837–848.
Phylogeographic structure of a freshwater crayfish (Decapoda: Parastacidae: Cherax preissii) in south-western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1OgsLfI&md5=f8045238765564ea5428684035037d68CAS |

Hughes, L. (2003). Climate change and Australia: trends, projections and impacts. Austral Ecology 28, 423–443.
Climate change and Australia: trends, projections and impacts.Crossref | GoogleScholarGoogle Scholar |

Kahindo, C. R., Bowie, C. K., and Bates, J. M. (2007). The relevance of data on genetic diversity for the conservation of Afro-montane regions. Biological Conservation 134, 262–270.
The relevance of data on genetic diversity for the conservation of Afro-montane regions.Crossref | GoogleScholarGoogle Scholar |

Kalinowski, S. T. (2004). Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conservation Genetics 5, 539–543.
Counting alleles with rarefaction: private alleles and hierarchical sampling designs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnsVWru78%3D&md5=8f92bc4c22584338060a55080a7d704bCAS |

Kalinowski, S. T. (2005). HP-RARE: a computer program for performing rarefaction on measures of allelic diversity. Molecular Ecology Notes 5, 187–189.
HP-RARE: a computer program for performing rarefaction on measures of allelic diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFyms7k%3D&md5=2d4dc49308e5b9a6181e87b032ad7f7bCAS |

Kearney, M. (2006). Habitat, environment and niche: what are we modelling? Oikos 115, 186–191.
Habitat, environment and niche: what are we modelling?Crossref | GoogleScholarGoogle Scholar |

Kearney, M., and Porter, W. P. (2004). Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85, 3119–3131.
Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard.Crossref | GoogleScholarGoogle Scholar |

Kuhner, M. K. (2006). LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22, 768–770.
LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Ont7k%3D&md5=cfc82a09ba8970bb1902440c365b14a0CAS |

Kuhner, M. K., and Smith, L. P. (2007). Comparing likelihood and Bayesian coalescent estimation of population parameters. Genetics 175, 155–165.
Comparing likelihood and Bayesian coalescent estimation of population parameters.Crossref | GoogleScholarGoogle Scholar |

Lessa, E. P., Cook, J. A., and Patton, J. L. (2003). Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. Proceedings of the National Academy of Sciences of the United States of America 100, 10331–10334.
Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFygu7g%3D&md5=81290b2730e5408a8b81a1be3410781aCAS |

Macey, J. R., Schulte, J. A., Larson, A., Fang, Z., Wang, Y., Tuniyev, B. S., and Papenfuss, T. J. (1998). Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of the Tibetan Plateau: a case of vicariance and dispersal. Molecular Phylogenetics and Evolution 9, 80–87.
Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of the Tibetan Plateau: a case of vicariance and dispersal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXht1yhurk%3D&md5=38a2d529854c2541abd38d4d81c527bcCAS |

McRae, B. H., and Beier, P. (2007). Circuit theory predicts gene flow in plant and animal populations. Proceedings of the National Academy of Sciences of the United States of America 104, 19885–19890.
Circuit theory predicts gene flow in plant and animal populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitFSqtg%3D%3D&md5=008bc9d540e592e50dc5aa56275479c6CAS |

Melville, J., Schulte, J. A., and Larson, A. (2004). A molecular study of phylogenetic relationships and evolution of antipredator strategies in Australian Diplodactylus geckos, subgenus Strophurus. Biological Journal of the Linnean Society. Linnean Society of London 82, 123–138.
A molecular study of phylogenetic relationships and evolution of antipredator strategies in Australian Diplodactylus geckos, subgenus Strophurus.Crossref | GoogleScholarGoogle Scholar |

Morgan, M. J., Roberts, J. D., and Keogh, J. S. (2007). Molecular phylogenetic dating supports an ancient endemic speciation model in Australia’s biodiversity hotspot. Molecular Phylogenetics and Evolution 44, 371–385.
Molecular phylogenetic dating supports an ancient endemic speciation model in Australia’s biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVOltbg%3D&md5=66bdb2c04bb67f8344258506d7f759d7CAS |

Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
Defining ‘Evolutionarily Significant Units’ for conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=80c7ebffd2202f98a40268dfef0dbf1bCAS |

Moritz, C. (2002). Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology 51, 238–254.
Strategies to protect biological diversity and the evolutionary processes that sustain it.Crossref | GoogleScholarGoogle Scholar |

Moritz, C., and Faith, D. P. (1998). Comparative phylogeography and the identification of genetically divergent areas for conservation. Molecular Ecology 7, 419–429.
Comparative phylogeography and the identification of genetically divergent areas for conservation.Crossref | GoogleScholarGoogle Scholar |

Munasinghe, D. H. N., Burridge, C. P., and Austin, C. M. (2004). Molecular phylogeny and zoogeography of the freshwater crayfish genus Cherax Erichson (Decapoda: Parastacidae) in Australia. Biological Journal of the Linnean Society. Linnean Society of London 81, 553–563.
Molecular phylogeny and zoogeography of the freshwater crayfish genus Cherax Erichson (Decapoda: Parastacidae) in Australia.Crossref | GoogleScholarGoogle Scholar |

Neel, M. C. (2008). Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic plant species Astragalus albens (Fabaceae). Biological Conservation 141, 938–955.
Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic plant species Astragalus albens (Fabaceae).Crossref | GoogleScholarGoogle Scholar |

Peakall, R., and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population software for teaching and research. Molecular Ecology Notes 6, 288–295.
GENALEX 6: genetic analysis in Excel. Population software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Peakall, R., Ruibal, M., and Lindenmayer, D. B. (2003). Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57, 1182–1195.

Plötner, J., Ohst, T., Bohme, W., and Schreiber, R. (2001). Divergence in mitochondrial DNA of near eastern water frogs with special reference to the systematic status of Cypriot and Anatolian populations. Amphibia-Reptilia 22, 397–412.
Divergence in mitochondrial DNA of near eastern water frogs with special reference to the systematic status of Cypriot and Anatolian populations.Crossref | GoogleScholarGoogle Scholar |

Ramos-Onsins, S. E., and Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution 19, 2092–2100.
| 1:CAS:528:DC%2BD38Xps12hsrc%3D&md5=595956a62805e0c5b395bbf16eb88e30CAS |

Read, K., Keogh, J. S., Scott, I. A. W., Roberts, J. D., and Doughty, P. (2001). Molecular phylogeny of the Australian frog genera Crinia, Geocrinia, and allied taxa (Anura: Myobatrachidae). Molecular Phylogenetics and Evolution 21, 294–308.
Molecular phylogeny of the Australian frog genera Crinia, Geocrinia, and allied taxa (Anura: Myobatrachidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotVynurY%3D&md5=48b6408692786764cbfe6602517a8598CAS |

Reid, A. (2002). Western Australian Onychophora (Peripatopsidae): a new genus, Kumadjena, for a southern species complex. Records of the Western Australian Museum 21, 129–155.

Roberts, J. D., Horwitz, P., Wardell-Johnson, G., Maxson, L. R., and Mahony, M. J. (1997). Taxonomy, relationships and conservation of a new genus and species of myobatrachid frog from the high rainfall region of southwestern Australia. Copeia 1997, 373–381.
Taxonomy, relationships and conservation of a new genus and species of myobatrachid frog from the high rainfall region of southwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Roberts, J. D., Conroy, S., and Williams, K. (1999). Conservation status of frogs in Western Australia. In ‘Declines and Disappearances of Australian Frogs’. (Ed. A. Campbell.) pp. 177–184. (Environment Australia: Canberra)

Rogers, A. R., and Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9, 552–569.
| 1:STN:280:DyaK383mtFeitA%3D%3D&md5=c6c49166a8b2727605878ea9f517b777CAS |

Rozas, J., and Rozas, R. (1999). DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15, 174–175.
DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisVOksrY%3D&md5=a7646f244abc3f09b44bcf280c43a82fCAS |

Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X., and Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497.
DnaSP, DNA polymorphism analyses by the coalescent and other methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVSisLo%3D&md5=740984f0d5e30dfa03e6b695f3bb11e1CAS |

Sexton, J. P., McIntyre, P. J., Angert, A. L., and Rice, K. J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology Evolution and Systematics 40, 415–436.
Evolution and ecology of species range limits.Crossref | GoogleScholarGoogle Scholar |

Solomon, S., Plattner, G. -K., Knutti, R., and Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the United States of America 106, 1704–1709.
Irreversible climate change due to carbon dioxide emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXitV2jur8%3D&md5=c414e6545dc403acd165fbd51448dcd8CAS |

Swan, M. (2007). Predicting the distribution of the sunset frog, Spicospina flammocaerulea, under current and changing climates. B.Sc.(Honours) Thesis, The University of Western Australia, Perth.

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.
| 1:CAS:528:DyaK3cXhslentA%3D%3D&md5=25732b3fad93ea3dc4c67aad32356d1aCAS |

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25, 4876–4882.
The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFyntQ%3D%3D&md5=ebd43b5762d07b763aeebb1eaaa360f3CAS |

Vandergast, A. G., Bohonak, A. J., Hathaway, S. A., Boys, J., and Fisher, R. N. (2008). Are hotspots of evolutionary potential adequately protected in southern California? Biological Conservation 141, 1648–1664.
Are hotspots of evolutionary potential adequately protected in southern California?Crossref | GoogleScholarGoogle Scholar |

Wardell-Johnson, G., Roberts, J. D., Driscoll, D. A., and Williams, K. (1995). Orange-bellied (Geocrinia vitellina) and white-bellied frogs (Geocrinia alba) recovery plan. The Department of Conservation and Land Management, Western Australia, Waneroo.

Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology 7, 256–276.
On the number of segregating sites in genetical models without recombination.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M7pvFSquw%3D%3D&md5=b0811500674bfdc6e539ce3d0e883bd0CAS |

Wheeler, M. A., and Byrne, M. (2006). Congruence between phylogeographic patterns in cpDNA variation in Eucalyptus marginata (Myrtaceae) and geomorphology of the Darling Plateau, south-west of Western Australia. Australian Journal of Botany 54, 17–26.
Congruence between phylogeographic patterns in cpDNA variation in Eucalyptus marginata (Myrtaceae) and geomorphology of the Darling Plateau, south-west of Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xhs1ajur0%3D&md5=a2c77030868179b98007c2f7e9bf51c8CAS |