Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Phylogenetic relationships in the lizard genus Diplodactylus Gray and resurrection of Lucasium Wermuth (Gekkota, Diplodactylidae)

Paul M. Oliver A B D , Mark N. Hutchinson A B and Steven J. B. Cooper A C
+ Author Affiliations
- Author Affiliations

A South Australian Museum, Adelaide, SA 5000, Australia.

B School of Earth and Environmental Sciences, University of Adelaide, SA 5005, Australia.

C Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, SA 5005, Australia.

D Corresponding author. Email: paul.oliver@adelaide.edu.au

Australian Journal of Zoology 55(3) 197-210 https://doi.org/10.1071/ZO07008
Submitted: 8 February 2006  Accepted: 24 May 2007   Published: 28 June 2007

Abstract

Diplodactylid geckos offer a model system for investigating the biogeographic history of Australia and adaptive radiations in the arid zone, but there is considerable uncertainty in the systematics of several key genera. We used sequence data from mitochondrial DNA to carry out a comprehensive analysis of phylogenetic relationships of geckos in the genus Diplodactylus. Parsimony and Bayesian analyses were highly concordant and allocated all species to one of two monophyletic clades, one comprising the species placed in the vittatus and conspicillatus species groups, the other comprising species placed in the stenodactylus and steindachneri species groups, plus D. byrnei, formerly in the vittatus group. The distinctness of these two clades is supported by external morphology of the digits, body and limb proportions, and osteology of the bones in the orbital region, and we use these characters to formally define the two clades as genera. We revive and expand the genus Lucasium for D. byrnei, D. steindachneri and the stenodactylus group, with the other species staying in a redefined Diplodactylus. The monotypic Rhynchoedura is distinct from Lucasium, although the Bayesian mtDNA analysis (but not parsimony) gives some support for a sister-group relationship between Lucasium and Rhynchoedura. Molecular data suggest that each of these clades represents a distinct radiation into semiarid and arid terrestrial habitats during the mid-Tertiary, well before the hypothesised Pliocene onset of major aridification.


Acknowledgements

We thank Paul Doughty, Brad Maryan, Scott Keogh, Mitzy Pepper and Paul Horner for access to data and specimens; Adam Skinner, Mike Lee and Andrew Hugall for their generous assistance with analysis and technical support; and Kathy Saint, Leanne Wheaton and Terry Bertozzi for assistance with laboratory work. This work was supported by grants from the Australia Pacific Science Foundation, Mark Mitchell Foundation and Australian Biological Resources Study. All South Australian Museum and University of Adelaide animal research is carried out under the supervision of the Wildlife and University of Adelaide (respectively) Animal Experimentation Ethics Committees.


References

Alley, N. F. (1998). Cainozoic stratigraphy, palaeoenvironments and geological evolution of the Lake Eyre Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 144, 239–263.
Crossref | GoogleScholarGoogle Scholar | Cogger H. G. (2000). ‘Reptiles and Amphibians of Australia.’ 6th edn. (Reed New Holland: Sydney.)

Dawson T. J., and Dawson L. (2006). Evolution of arid Australia and its consequences for vertebrates. In ‘Evolution and Biogeography of Australasian Vertebrates’. (Eds J. Merrick, M. Archer, G. M. Hickey and M. S. Y. Lee.) pp. 51–70. (Auscipub: Oatlands, NSW.)

Donnellan, S. C. , Hutchinson, M. N. , and Saint, K. M. (1999). Molecular evidence for the phylogeny of Australian gekkonoid lizards. Biological Journal of the Linnean Society 67, 97–118.
Crossref | GoogleScholarGoogle Scholar | Frakes L. A., McGowran B., and Bowler J. M. (1987). Evolution of Australian environments. In ‘Fauna of Australia. General Articles. Volume 1A’. (Eds G. Dyne and D. W. Walton.) pp. 1–13. (Australian Government Publishing Service: Canberra.)

Fujioka, T. , Chappell, J. , Honda, M. , Yatsevich, I. , Fifield, K. , and Fabel, D. (2005). Global cooling initiated stony deserts in central Australia 2–4 Ma, dated by cosmogenic 21Ne–10Be. Geology 33, 993–996.
Crossref | GoogleScholarGoogle Scholar | Greer A. E. (1989). ‘The Biology and Evolution of Australian Lizards.’ (Surrey Beatty: Sydney.)

Grismer L. L. (1988). Phylogeny, taxonomy, classification, and biogeography of eublepharid geckos. In ‘Phylogenetic Relationships of the Lizard Families’. (Eds R. Estes.and G. Pregill.) pp. 369–469. (Stanford University Press: Stanford, CA.)

Han, D. , Zhou, K. , and Bauer, A. M. (2004). Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the Gekkota. Biological Journal of the Linnean Society 83, 353–368.
Crossref | GoogleScholarGoogle Scholar | Nylander J. A. A. (2004). ‘MrModelltest v2.’ Program distributed by author. (Evolutionary Biology Center, Uppsala University: Uppsala, Sweden.)

Oliver, P. , Hugall, A. , Adams, M. , Cooper, S. J. B. , and Hutchinson, M. (2007). Genetic elucidation of ancient and cryptic diversity in a group of Australian geckos: the Diplodactylus vittatus complex. Molecular Phylogenetics and Evolution 44, 77–88.
Crossref | GoogleScholarGoogle Scholar | PubMed | Pianka E. R. (1986). ‘Ecology and Natural History of Desert Lizards.’ (Princeton University Press: Princeton, NJ.)

Pianka, E. R. , and Pianka, H. D. (1976). Comparative ecology of twelve species of nocturnal lizards (Gekkonidae) in the Western Australian desert. Copeia 1976, 125–142.
Crossref | GoogleScholarGoogle Scholar | Rambaut A. (1996). ‘Se-al. Sequence alignment editor, Version 1.0 α 1.’ (Department of Zoology, University of Oxford: Oxford.)

Rhodes E., Chappell J., Fujioka T., Fitzsimmons K., Aubert M., and Hewitt D. (2005). The history of aridity in Australia: chronological developments. In ‘Regolith 2005’. (Ed. I . C. Roach.) pp. 265–268. (CRC LEME: Kensington, WA.).

Ronquist F., and Huelsenbeck J. P. (2003). ‘MrBayes 3: Bayesian Phylogenetic Inference Under Mixed Models.’ Computer program and documentation available at www.morphbank.ebc.uu.se/mrbayes

Russell, A. P. (1979). Parallelism and integrated design in the foot structure of gekkonine and diplodactyline geckos. Copeia 1979, 1–21.
Crossref | GoogleScholarGoogle Scholar | Storr G. M., Smith L. A., and Johnstone R. E. (1990). ‘Lizards of Western Australia. Geckos and Pygopods.’ (Western Australian Museum: Perth.)

Swofford D. L. (2000). ‘PAUP*: Phylogenetic Analysis using Parsimony * (and other methods). Version 4.’ (Sinauer: Sunderland, MA.)

Zaaf, A. , and Van Damme, R. (2001). Limb proportions in climbing and ground-dwelling geckos (Lepidosauria, Gekkonidae): a phylogenetically informed analysis. Zoomorphology 121, 45–53.
Crossref | GoogleScholarGoogle Scholar |





Appendix 1.  Samples from the genera Diplodactylus and Lucasium used in the genetic analyses
Click to zoom



Appendix 2.  Samples from gekkonid genera other than Diplodactylus and Lucasium included in the genetic analyses
A2



Appendix 3.  Osteological specimens (diplodactylines) examined
A3