Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Habitat preferences of reintroduced banteng (Bos javanicus) into the Salakphra Wildlife Sanctuary, Thailand

Rattanawat Chaiyarat https://orcid.org/0000-0002-1984-5236 A C , Namphung Youngpoy A , Praeploy Kongsurakan A and Seree Nakbun B
+ Author Affiliations
- Author Affiliations

A Wildlife and Plant Research Center, Faculty of Environment and Resource Studies, Mahidol University, Phuttamonthon, Nakhon Pathom, 73170, Thailand.

B Khao Nampu Nature and Wildlife Education Center, Department of National Parks, Wildlife and Plant Conservation, Kanchanaburi, 71250, Thailand.

C Corresponding author. Email: rattanawat.cha@mahidol.ac.th

Wildlife Research 46(7) 573-586 https://doi.org/10.1071/WR18184
Submitted: 22 November 2018  Accepted: 4 July 2019   Published: 12 September 2019

Abstract

Context: Large forest-dwelling mammals are highly sensitive to habitat structure. Thus, understanding the responses of reintroduced banteng (Bos javanicus d’Alton 1823) to their habitat is important for ensuring the sustainability of a reintroduction program.

Aims: The aim of the present study was to evaluate the habitat preferences of banteng after reintroduction into the Salakphra Wildlife Sanctuary in Thailand on the basis of fieldwork conducted between January 2015 and November 2017.

Methods: Seven banteng individuals bred at the Khao Nampu Nature and Wildlife Education Center were systematically reintroduced into the Salakphra Wildlife Sanctuary in 2015 (four individuals) and 2016 (three individuals). The banteng individuals were tracked via radio-collars and camera-traps. The maximum-entropy method (MaxEnt) and multiple logistic regressions (MLR) were used to identify habitat preferences. Kernel-density estimates (KDE) and a minimum convex polygon (MCP) were used to estimate the area of the habitat used.

Key results: In total, 407 radio-signal locations showed that the MaxEnt habitat-preference models classified the banteng as associated with distance from villages and salt licks (regularised training gain of >1.0). Multiple logistic regressions form 32 camera-trap locations classified the banteng as associated with low elevations far from villages, guard stations and roads in a flat area (no aspect). The two methods for estimating habitat use provided similar results and showed that the reintroduced banteng used a wider range of habitat in the dry than in the wet season.

Conclusions: The results from the present study suggest that the reintroduced banteng individuals prefer low elevations and flat areas without human activity.

Implications: These findings are important for possible translocations elsewhere.

Additional keywords: habitat use, reintroduction, spatial analysis.


References

Aebischer, N. J., Robertson, P. A., and Kenward, R. E. (1993). Compositional analysis of habitat use from animal radio‐tracking data. Ecology 74, 1313–1325.
Compositional analysis of habitat use from animal radio‐tracking data.Crossref | GoogleScholarGoogle Scholar |

Alfred, R., Ambu, L., Nathan, S. K. S. S., and Goossens, B. (2011). Current status of Asian elephants in Borneo. Gajah 35, 29–35.

Araújo, M. B., and Williams, P. H. (2000). Selecting areas for species persistence using occurrence data. Biological Conservation 96, 331–345.
Selecting areas for species persistence using occurrence data.Crossref | GoogleScholarGoogle Scholar |

Armstrong, D. P., and Seddon, P. J. (2008). Directions in reintroduction biology. Trends in Ecology & Evolution 23, 20–25.
Directions in reintroduction biology.Crossref | GoogleScholarGoogle Scholar |

Bradshaw, C. J. A., Isagi, Y., Kaneko, S., Brook, B. W., Bowman, D. M. J. S., and Frankham, R. (2007). Low genetic diversity in the bottlenecked population of endangered non-native banteng in northern Australia. Molecular Ecology 16, 2998–3008.
Low genetic diversity in the bottlenecked population of endangered non-native banteng in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Brotons, L., Thuiller, W., Araújo, M. B., and Hirzel, A. H. (2004). Presence–absence versus presence-only modeling methods for predicting bird habitat suitability. Ecography 27, 437–448.
Presence–absence versus presence-only modeling methods for predicting bird habitat suitability.Crossref | GoogleScholarGoogle Scholar |

Carvalho, P., Nogueira, A. J. A., Soares, A. M. V. M., and Fonseca, C. (2008). Ranging behaviour of translocated roe deer in a Mediterranean habitat: seasonal and altitudinal influences on home range size and patterns of range use. Mammalia 72, 89–94.
Ranging behaviour of translocated roe deer in a Mediterranean habitat: seasonal and altitudinal influences on home range size and patterns of range use.Crossref | GoogleScholarGoogle Scholar |

Chaiyarat, R., and Srikosamatara, S. (2009). Populations of domesticated cattle and buffalo in the Western Forest Complex of Thailand and their possible impacts on the wildlife community. Journal of Environmental Management 90, 1448–1453.
Populations of domesticated cattle and buffalo in the Western Forest Complex of Thailand and their possible impacts on the wildlife community.Crossref | GoogleScholarGoogle Scholar | 19036494PubMed |

Chaiyarat, R., Youngpoy, N., and Prempree, P. (2015). Wild Asian elephant Elephas maximus population in Salakpra Wildlife Sanctuary, Thailand. Endangered Species Research 29, 95–102.
Wild Asian elephant Elephas maximus population in Salakpra Wildlife Sanctuary, Thailand.Crossref | GoogleScholarGoogle Scholar |

Chaiyarat, R., Saengpong, S., Tunwattana, W., and Dunriddach, P. (2018). Habitat and food utilization by banteng (Bos javanicus d’Alton, 1823) accidentally introduced into the Khao Khieo–Khao Chomphu Wildlife Sanctuary, Thailand. Mammalia 82, 23–34.

Conant, S. (1988). Saving endangered species by translocation. Bioscience 38, 254–257.
Saving endangered species by translocation.Crossref | GoogleScholarGoogle Scholar |

Corbet, G. B., and Hill, J. E. (1992). ‘The Mammals of the Indomalay Region: a Systematic Review. Natural History Museum Publications.’ (Oxford University Press: Oxford, UK.)

Dobson, A. P., Rodriguez, J. P., Roberts, W. M., and Wilcove, D. S. (1997). Hopes for the future: restoration ecology and conservation biology. Science 277, 515–522.
Hopes for the future: restoration ecology and conservation biology.Crossref | GoogleScholarGoogle Scholar |

Ebenhard, T. (1995). Conservation breeding as a tool for saving animal species from extinction. Trends in Ecology & Evolution 10, 438–443.
Conservation breeding as a tool for saving animal species from extinction.Crossref | GoogleScholarGoogle Scholar |

Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamara, M., Nakazawa, Y., Overton, J. M. M., Peterson, A. T., Phillips, S. J., Richardson, R., Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S., Wisz, M. S., and Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151.
Novel methods improve prediction of species’ distributions from occurrence data.Crossref | GoogleScholarGoogle Scholar |

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., En Chee, Y., and Yates, C. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distribution 17, 43–57.
A statistical explanation of MaxEnt for ecologists.Crossref | GoogleScholarGoogle Scholar |

ESRI (2007). ‘ESRI® Data & Maps 2006.’ (ESRI: New York, NY.)

Fielding, A. H., and Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 38–49.
A review of methods for the assessment of prediction errors in conservation presence/absence models.Crossref | GoogleScholarGoogle Scholar |

Fielding, A. H., and Haworth, P. F. (1995). Testing the generality of bird-habitat models. Conservation Biology 9, 1466–1481.
Testing the generality of bird-habitat models.Crossref | GoogleScholarGoogle Scholar |

Gardner, P. C. (2014). The natural history, non-invasive sampling, activity patterns and population genetic structure of the Bornean banteng Bos javanicus lowi in Sabah, Malaysian Borneo. Ph.D. Thesis, Cardiff University, Cardiff, UK.

Gardner, P. C., Pudyatmoko, S., Bhumpakphan, N., Yindee, M., Ambu, D. L. N., and Goossens, B. (2014). Banteng Bos javanicus d’Alton, 1823. In ‘Ecology, Evolution and Behaviour of Wild Cattle: Implications for Conservation’ pp. 216–230. (Eds M. Melletti and J. Burton.) (Cambridge University Press: Cambridge, UK.)

Gardner, P. C., Hedges, S., Pudyatmoko, S., Gray, T. N. E., and Timmins, R. (2016). The IUCN Red List of Threatened Species.’ e.T2888A46362970. Available at http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T2888A46362970.en [verified 24 July 2018].

Giovanelli, J. G. R., de Siqueirac, M. F., Haddadb, C. F. B., and Alexandrino, J. (2010). Modeling a spatially restricted distribution in the Neotropics: how the size of calibration area affects the performance of five presence-only methods. Ecological Modelling 221, 215–224.
Modeling a spatially restricted distribution in the Neotropics: how the size of calibration area affects the performance of five presence-only methods.Crossref | GoogleScholarGoogle Scholar |

Guisan, A., and Zimmermann, N. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186.
Predictive habitat distribution models in ecology.Crossref | GoogleScholarGoogle Scholar |

Halvorsen, R., Mazzoni, S., Dirksen, J. W., Næsset, E., Gobakken, T., and Ohlson, M. (2016). How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt? Ecological Modelling 328, 108–118.
How important are choice of model selection method and spatial autocorrelation of presence data for distribution modelling by MaxEnt?Crossref | GoogleScholarGoogle Scholar |

   (a) IUCN/SSC (2013). ‘Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0.’ (IUCN Species Survival Commission: Gland, Switzerland.)

Kendall, M. G. (1938). A new measure of rank correlation. Biometrika 30, 81–93.
A new measure of rank correlation.Crossref | GoogleScholarGoogle Scholar |

Kolowski, J. M., and Forrester, T. D. (2017). Camera trap placement and the potential for bias due to trails and other features. PLoS One 12, e0186679.
Camera trap placement and the potential for bias due to trails and other features.Crossref | GoogleScholarGoogle Scholar | 29045478PubMed |

Kumar, S., and Stohlgren, T. J. (2009). MaxEnt modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and The Natural Environment 1, 94–98.

Lekagul, B., and McNeely, J. A. (1977). ‘Mammals of Thailand.’ (Association for the Conservation of Wildlife: Bangkok, Thailand.)

Massaro, M., Chick, A., Kennedy, E. S., and Whitsed, R. (2018). Post-reintroduction distribution and habitat preferences of a spatially limited island bird species. Animal Conservation 21, 54–64.
Post-reintroduction distribution and habitat preferences of a spatially limited island bird species.Crossref | GoogleScholarGoogle Scholar |

Monterroso, P., Brito, J. C., Ferreras, P., and Alves, P. C. (2009). Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small radio‐tracking datasets in species conservation. Journal of Zoology 279, 27–35.
Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small radio‐tracking datasets in species conservation.Crossref | GoogleScholarGoogle Scholar |

Moorhouse, T., Gelling, M., and Macdonald, D. (2009). Effects of habitat quality upon reintroduction success in water voles: evidence from a replicated experiment. Biological Conservation 142, 53–60.
Effects of habitat quality upon reintroduction success in water voles: evidence from a replicated experiment.Crossref | GoogleScholarGoogle Scholar |

Pearson, R. G., Raxworthy, C. J., Nakamura, M., and Peterson, A. T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34, 102–117.
Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar.Crossref | GoogleScholarGoogle Scholar |

Pedrono, M., Tuan, H. M., Chouteau, P., and Vallejo, F. (2009). Status and distribution of the endangered banteng Bos javanicus birmanicus in Vietnam: a conservation tragedy. Oryx 43, 618–625.
Status and distribution of the endangered banteng Bos javanicus birmanicus in Vietnam: a conservation tragedy.Crossref | GoogleScholarGoogle Scholar |

Phan, C., and Gray, T. N. E. (2010). Ecology and natural history of banteng in eastern Cambodia: evidence from camera-trapping in Mondulkiri Protected Forest and Phnom Prich Wildlife Sanctuary. Cambodian Journal of Natural History 2, 118–126.

Phillips, S. J., Miroslav, D., and Schapire, R. E. (2004). ‘Maxent Software for Species Distribution Modeling.’ Available at http://cs.princeton.edu/~schapire/Maxent/ [verified 2018].

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231–259.
Maximum entropy modeling of species geographic distributions.Crossref | GoogleScholarGoogle Scholar |

Powell, R. A., and Proulx, G. (2003). Trapping and marking terrestrial mammals for research: integrating ethics, performance criteria, techniques, and common sense. Institute for Laboratory Animal Research Journal 44, 259–276.
Trapping and marking terrestrial mammals for research: integrating ethics, performance criteria, techniques, and common sense.Crossref | GoogleScholarGoogle Scholar |

Prakobphon, N. (1988). Behaviour of banteng (Bos javanicus) in Chiang Mai Zoo Changwat Chiang Mai and Khao Kheow Open Zoo Changwat Chonburi. M.Sc. Thesis, Chiang Mai University, Chiang Mai, Thailand.

Prayurasiddhi, T. (1997). The ecological separation of gaur (Bos gaurus) and banteng (Bos javanicus) in Huai Kha Khaeng Wildlife Sanctuary. Ph.D. Dissertation, University of Minnesota, MN.

Pudyatmoko, S. (2004). Does the banteng (Bos javanicus) have a future in Java? Challenges of the conservation of a large herbivore in a densely populated island. In ‘The 3rd IUCN World Conservation Congress’ pp. 1–6. (IUCN: Bangkok, Thailand.)

Pudyatmoko, S., Djuwantoko, , and Sabarno, Y. (2007). Evidence of bateng (Bos javanicus) decline in Baluran National Park, Indonesia. The Journal of Biological Sciences 7, 854–859.
Evidence of bateng (Bos javanicus) decline in Baluran National Park, Indonesia.Crossref | GoogleScholarGoogle Scholar |

Purwantara, B., Noor, R. R., Andersson, G., and Rodriguez-Martinez, H. (2012). Banteng and Bali cattle in Indonesia: status and forecasts. Reproduction in Domestic Animals 47, 2–6.
Banteng and Bali cattle in Indonesia: status and forecasts.Crossref | GoogleScholarGoogle Scholar | 22212203PubMed |

R Core Team (2016). ‘R: a Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria.) Available at https://www.R-project.org/ [verified 10 November 2018].

Rovero, F., and Marshall, A. R. (2009). Camera trapping photographic rate as an index of density in forest ungulates. Journal of Applied Ecology 46, 1011–1017.
Camera trapping photographic rate as an index of density in forest ungulates.Crossref | GoogleScholarGoogle Scholar |

Rowcliffe, J. M., Field, J., Turvey, S. T., and Carbone, C. (2008). Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology 45, 1228–1236.
Estimating animal density using camera traps without the need for individual recognition.Crossref | GoogleScholarGoogle Scholar |

Saijuntha, W., Petney, T., and Kongbuntad, W. (2013). Genetic characterization of banteng (Bos javanicus) in Lam Pao Wildlife Conservation Development and Promotion Station, Kalasin Province. Thai Journal of Genetics 6, 72–76.

Salakphra Wildlife Sanctuary (2011). ‘Master plan of Salakphra Wildlife Sanctuary BC 2554–2558, Kanchanaburi Province.’ (Areas Regional Office 3 (Ban Pong), Department of National Park: Kanchanaburi, Thailand.)

Sankar, K., Pabla, H. S., Patil, C. K., Nigam, P., Qureshi, Q., Navaneethan, B., Manjrekar, M., Virkar, P. S., and Mondal, K. (2013). Home range, habitat use and food habits of re-introduced gaur (Bos gaurus gaurus) in Bandhavgarh Tiger Reserve, central India. Tropical Conservation Science 6, 50–69.
Home range, habitat use and food habits of re-introduced gaur (Bos gaurus gaurus) in Bandhavgarh Tiger Reserve, central India.Crossref | GoogleScholarGoogle Scholar |

Seaman, D. E., and Powell, R. A. (1996). An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77, 2075–2085.
An evaluation of the accuracy of kernel density estimators for home range analysis.Crossref | GoogleScholarGoogle Scholar |

Seaman, D. E., Millspaugh, J. J., Kernohan, B. J., Brundige, G. C., Raedeke, K. J., and Gitzen, R. A. (1999). Effects of sample size on Kernel home range estimates. The Journal of Wildlife Management 63, 739–747.
Effects of sample size on Kernel home range estimates.Crossref | GoogleScholarGoogle Scholar |

Seddon, P. J. (1999). Persistence without intervention: assessing success in wildlife reintroductions. Trends in Ecology & Evolution 14, 503.
Persistence without intervention: assessing success in wildlife reintroductions.Crossref | GoogleScholarGoogle Scholar |

Shugart, H. H., French, N. H. F., Kasischke, E. S., Slawski, J. J., Dull, C. W., Shuchman, R. A., and Mwangi, J. (2001). Detection of vegetation change using reconnaissance imagery. Global Change Biology 7, 247–252.
Detection of vegetation change using reconnaissance imagery.Crossref | GoogleScholarGoogle Scholar |

Soisalo, M. K., and Cavalcanti, S. M. C. (2006). Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture–recapture sampling in combination with GPS radio-telemetry. Biological Conservation 129, 487–496.
Estimating the density of a jaguar population in the Brazilian Pantanal using camera-traps and capture–recapture sampling in combination with GPS radio-telemetry.Crossref | GoogleScholarGoogle Scholar |

Srikosamatara, S. (1993). Density and biomass of large herbivores and other mammals in a dry-tropical forest, western Thailand. Journal of Tropical Ecology 9, 33–43.
Density and biomass of large herbivores and other mammals in a dry-tropical forest, western Thailand.Crossref | GoogleScholarGoogle Scholar |

Srikosamatara, S., and Suteethorn, V. (1995). Populations of gaur and banteng and their management in Thailand. Natural History Bulletin of the Siam Society 43, 55–83.

Sutherland, W. J., Armstrong, D., Butchart, S. H., Earnhardt, J. M., Ewen, J., Jamieson, I., Jones, C. G., Lee, R., Newbery, P., and Nichols, J. D. (2010). Standards for documenting and monitoring bird reintroduction projects. Conservation Letters 3, 229–235.
Standards for documenting and monitoring bird reintroduction projects.Crossref | GoogleScholarGoogle Scholar |

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science 240, 1285–1293.
Measuring the accuracy of diagnostic systems.Crossref | GoogleScholarGoogle Scholar | 3287615PubMed |

Swihart, R. K., and Slade, N. A. (1985). Influence of sampling interval on estimates of homerange size. The Journal of Wildlife Management 49, 1019–1025.
Influence of sampling interval on estimates of homerange size.Crossref | GoogleScholarGoogle Scholar |

Trisurat, Y., Pattanavibool, A., Gale, G. A., and Reed, D. H. (2010). Improving the viability of large-mammal populations by using habitat and landscape models to focus conservation planning. Wildlife Research 37, 401–412.
Improving the viability of large-mammal populations by using habitat and landscape models to focus conservation planning.Crossref | GoogleScholarGoogle Scholar |

Varma, S., Pittet, A., and Jamadagni, H. S. (2006). Experimenting usage of camera-traps for population dynamics study of the Asian elephant Elephas maximus in southern India. Current Science 91, 324–331.

Wharton, C. H. (1968). Man, fire and wild cattle in Southeast Asia. Tall Timbers Fire Ecology Conference Proceedings 8, 107–167.

White, G. C., and Garrot, R. A. (1990). ‘Analysis of Radio Tracking Data.’ (Academic Press, Inc.: CA)