Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Birds not in flight: using camera traps to observe ground use of birds at a wind-energy facility

Shellie R. Puffer https://orcid.org/0000-0003-4957-0963 A I , Laura A. Tennant A , Jeffrey E. Lovich A , Mickey Agha B , Amanda L. Smith C , David K. Delaney D , Terence R. Arundel A , Leo J. Fleckenstein E , Jessica Briggs F , Andrew D. Walde G and Joshua R. Ennen H
+ Author Affiliations
- Author Affiliations

A US Geological Survey, Southwest Biological Science Center, 2255 North Gemini Drive, MS-9394, Flagstaff, AZ 86001, USA.

B Washington Department of Fish and Wildlife, 1111 Washington Street SE, Olympia, WA 98501, USA.

C Sonoran Institute, 100 North Stone Avenue Suite 400, Tucson, AZ 85701, USA.

D US Army Construction Engineering Research Laboratory, PO Box 9005, Champaign, IL 61826-9005, USA.

E Aquaculture Research Center, Kentucky State University, 103 Athletic Drive, Frankfort, KY 40601, USA.

F Department of Biological Sciences, University of New Hampshire, 38 Academic Way, Durham, NH 03824, USA.

G Walde Research and Environmental Consulting, Atascadero, CA 93422, USA.

H Chattanooga Zoo, 301 North Holtzclaw Avenue, Chattanooga, TN 37404, USA.

I Corresponding author. Email: mpuffer@usgs.gov

Wildlife Research 49(3) 283-294 https://doi.org/10.1071/WR21071
Submitted: 30 April 2021  Accepted: 6 July 2021   Published: 14 December 2021

Abstract

Context: Camera trapping is increasingly used to collect information on wildlife occurrence and behaviour remotely. Not only does the technique provide insights into habitat use by species of interest, it also gathers information on non-target species.

Aims: We implemented ground-based camera trapping to investigate the behaviours of ground-dwelling birds, a technique that has largely been unutilised for studying birds, especially in wind-energy facilities.

Methods: We used camera traps to monitor activities of Agassiz’s desert tortoises (Gopherus agassizii) at their self-constructed burrows in a wind-energy facility near Palm Springs, California, USA. While doing so, we collected data on numerous burrow commensals, including birds.

Key results: Monitoring from late spring to mid-autumn in one year showed regular use of tortoise burrows and the immediate area by 12 species of birds, especially passerines. The most abundant species, as indicated by the number of photographs, but not necessarily individuals, was the rock wren (Salpinctes obsoletus), with a total of 1499 events. Birds appeared to use the interior or proximate vicinity of burrows for gathering nesting material, displaying, feeding, dust bathing and other activities. Of the bird species observed, 10 are known to be occasional casualties of turbine-blade strikes. The minimum known-age of a burrow had a positive relationship with bird counts.

Conclusions: Using camera traps focused at ground level can be a useful tool in avian conservation efforts because it is an effective technique for measuring bird presence, activity and behaviour in altered habitats such as wind farms, especially for those species that are low flyers or ground dwellers.

Implications: Acquiring data over the long term by using ground-based monitoring with camera traps could add to our understanding of avian behaviour and habitat use in relation to wind-energy infrastructure and operations, and help determine the vulnerability of avifauna that utilise the area.

Keywords: Agassiz’s desert tortoise, avians, avifauna, behaviour, Gopherus agassizii, ground-level, natural features.


References

Agha, M., Delaney, D., Lovich, J. E., Briggs, J., Austin, M., and Price, S. J. (2015a). Nelson’s big horn sheep (Ovis canadensis nelsoni) trample Agassiz’s desert tortoise (Gopherus agassizii) burrow at a California wind energy facility. Bulletin of the Southern California Academy of Sciences 114, 58–62.
Nelson’s big horn sheep (Ovis canadensis nelsoni) trample Agassiz’s desert tortoise (Gopherus agassizii) burrow at a California wind energy facility.Crossref | GoogleScholarGoogle Scholar |

Agha, M., Augustine, B., Lovich, J. E., Delaney, D., Sinervo, B., Murphy, M. O., Ennen, J. R., Briggs, J. R., Cooper, R., and Price, S. J. (2015b). Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii). Journal of Thermal Biology 49–50, 119–126.
Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii).Crossref | GoogleScholarGoogle Scholar | 25774035PubMed |

Agha, M., Smith, A. L., Lovich, J. E., Delaney, D., Ennen, J. R., Briggs, J., Fleckenstein, L. J., Tennant, L. A., Puffer, S. R., Walde, A., and Arundel, T. R. (2017). Mammalian mesocarnivore visitation at tortoise burrows in a wind farm. The Journal of Wildlife Management 81, 1117–1124.
Mammalian mesocarnivore visitation at tortoise burrows in a wind farm.Crossref | GoogleScholarGoogle Scholar |

Allison, T. D., Diffendorfer, J. E., Baerwald, E. F., Beston, J. A., Drake, D., Hale, A. M., Hein, C. D., Huso, M. M., Loss, S. R., Lovich, J. E., Strickland, M. D., Williams, K. A., and Winder, V. L. (2019). ‘Impacts to wildlife of wind energy siting and operation in the United States.’ Issues in Ecology, Report No. 21. (Ecological Society of America: Washington, DC, USA.)

American Wind Wildlife Institute (AWWI) (2019). AWWI Technical Report: a summary of bird fatality data in a nationwide database. American Wind Wildlife Institute, Washington, DC, USA.

Anderson, R. L., Strickland, D., Tom, J., Neumann, N., Erickson, W., Cleckler, J., Mayorga, G., Nuhn, G., Leuders, A., and Schneider, J. (2000). Avian monitoring and risk assessment at Tehachapi Pass and San Gorgonio Pass wind resource areas, California: Phase 1 preliminary results. In ‘Proceedings of the National Avian–Wind Power Planning Meeting III’. (Ed. LGL Ltd.) pp. 31–46. (LGL Ltd: King City, ON, USA.)

Anderson, R., Neumann, N., Tom, J., Erickson, W. P., Strickland, M. D., Bourassa, M., Bay, K. J., and Sernka, K. J. (2004). Avian monitoring and risk assessment at Tehachapi Pass Wind Resource Area, Period of Performance: October 2, 1996 – May 27, 1998. Subcontractor report. National Renewable Energy Laboratory, Golden, CO, USA.

Anderson, R., Tom, J., Neumann, N., Erickson, W., Strickland, M., and Bourassa, M. (2005). Avian monitoring and risk assessment at the San Gorgonio Wind Resource Area. Report by California Energy Commission and Western Ecosystems Technology Inc. National Renewable Energy Laboratory, Golden, CO, USA.

Armenteros, J. A., Sánchez-García, C., Prieto, R., Lomillos, J. M., Pérez, J. A., Alonso, M. E., and Gaudioso, V. R. (2015). Do wild Red-legged Partridges (Alectoris rufa) use feeders? An investigation of their feeding patterns using camera trapping. Avian Biology Research 8, 14–24.
Do wild Red-legged Partridges (Alectoris rufa) use feeders? An investigation of their feeding patterns using camera trapping.Crossref | GoogleScholarGoogle Scholar |

Arnett, E. B., Inkley, D. B., Johnson, D. H., Larkin, R. P., Manes, S., Manville, A. M., Mason, J. R., Morrison, M. L., Strickland, M. D., and Thresher, R. (2007). Impacts of wind energy facilities on wildlife and wildlife habitat. Wildlife Society Technical Review 07-2. The Wildlife Society, Bethesda, MD, USA.

Arnett, E. B., Brown, W. K., Erickson, W. P., Fiedler, J. K., Hamilton, B. L., Henry, T. H., Jain, A., Johnson, G. D., Kerns, J., Koford, R. R., Nicholson, C. P., O’Connell, T. J., Piorkowski, M. D., and Tankersley, R. D. (2008). Patterns of bat fatalities at wind energy facilities in North America. The Journal of Wildlife Management 72, 61–78.
Patterns of bat fatalities at wind energy facilities in North America.Crossref | GoogleScholarGoogle Scholar |

Austin, G. T., and Smith, E. L. (1974). Use of burrows by brown towhees and black-throated sparrows. The Auk 91, 167.
Use of burrows by brown towhees and black-throated sparrows.Crossref | GoogleScholarGoogle Scholar |

Berry, K. H. (1975). Desert tortoise relocation project. Status report for 1974. National Biological Survey, Riverside Field Station, Riverside, CA, USA.

Berry, K. H., and Murphy, R. W. (2019). Gopherus agassizii (Cooper 1861) – Mojave Desert Tortoise, Agassiz’s Desert Tortoise. In ‘Conservation Biology of Freshwater Turtles and Tortoises: a Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group’. (Eds A. G. J. Rhodin, J. B. Iverson, P. P. van Dijk, C. B. Stanford, E. V. Goode, K. A. Buhlmann, P. C. H. Pritchard, and R. A. Mittermeier.) Chelonian Research Monographs 5, 109.1–45.

Berry, K. H., Lyren, L. M., Mack, J. S., Brand, L. A., and Wood, D. A. (2016). Desert tortoise annotated bibliography, 1991–2015. US Geological Survey Open-File Report 2016–1023. US Geological Survey, Reston, VA, USA10.3133/ofr20161023

Betts, K. S. (2000). The wrong place to perch. Environmental Science & Technology 34, 292A–293A.
The wrong place to perch.Crossref | GoogleScholarGoogle Scholar |

Bidwell, T. (2002). Ecology and management of the lesser prairie chicken in Oklahoma. Oklahoma Cooperative Extension Service Report E-970. Oklahoma State University, Stillwater, OK, USA.

Boarman, W. I. (2003). Managing a subsidized predator population: reducing common raven predation on desert tortoises. Environmental Management 32, 205–217.
Managing a subsidized predator population: reducing common raven predation on desert tortoises.Crossref | GoogleScholarGoogle Scholar | 14753646PubMed |

Bowers, R., and Dunning, J. (1985). Predator avoidance through burrow use by Cassin’s and Black-throated Sparrows. Western Birds 16, 51.

Bridges, A. S., and Noss, A. J. (2011). Behavior and activity patterns. In ‘Camera Traps in Animal Ecology’. (Eds A. F. O’Connell, J. D. Nichols, and K. U. Karanth.) pp. 57–69. (Springer: New York, NY, USA.)

Buckland, S. T., Summers, R. W., Borchers, D. L., and Thomas, L. (2006). Point transect sampling with traps or lures. Journal of Applied Ecology 43, 377–384.
Point transect sampling with traps or lures.Crossref | GoogleScholarGoogle Scholar |

Bulova, S. J. (2002). How temperature, humidity, and burrow selection affect evaporative water loss in desert tortoises. Journal of Thermal Biology 27, 175–189.
How temperature, humidity, and burrow selection affect evaporative water loss in desert tortoises.Crossref | GoogleScholarGoogle Scholar |

Burge, B. L. (1978). Physical characteristics and patterns of utilization of cover sites used by Gopherus agassizii in southern Nevada. In ‘Proceedings of the Desert Tortoise Council Symposium’. (Ed. M. Trotter.) pp. 80–111. (Desert Tortoise Council: San Diego, CA, USA.)

Butts, K. O., and Lewis, J. C. (1982). The importance of prairie dog towns to burrowing owls in Oklahoma. Proceedings of the Oklahoma Academy of Science 62, 46–52.

Cade, T. J. (1962). Wing movements, hunting, and displays of the Northern Shrike. The Wilson Bulletin 74, 386–408.

Ceballos, G., Ehrlich, P. R., and Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences of the United States of America 114, E6089–E6096.
Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines.Crossref | GoogleScholarGoogle Scholar | 28696295PubMed |

Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K., and May, F. (2020). Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243.
Ecosystem decay exacerbates biodiversity loss with habitat loss.Crossref | GoogleScholarGoogle Scholar | 32728213PubMed |

Coate, K. (1994). Another instance of Thick-billed Grasswrens hiding in burrows. Australian Bird Watcher 15, 278–279.

Cohn, J. P. (2008). How ecofriendly are wind farms? Bioscience 58, 576–578.
How ecofriendly are wind farms?Crossref | GoogleScholarGoogle Scholar |

Coombs, E. M. (1974). Utah cooperative desert tortoise study (Gopherus agassizii). Report to the Bureau of Land Management, Utah, and the Utah Division of Wildlife Resources.

Crowe, D., and Longshore, K. (2013). Nest site characteristics and nesting success of the Western Burrowing Owl in the eastern Mojave Desert. Journal of Arid Environments 94, 113–120.
Nest site characteristics and nesting success of the Western Burrowing Owl in the eastern Mojave Desert.Crossref | GoogleScholarGoogle Scholar |

Cryan, P. M., Gorresen, P. M., Hein, C. D., Schirmacher, M. R., Diehl, R. H., Huso, M. H., Hayman, D. T. S., Fricker, P. D., Bonaccorso, F. J., Johnson, D. H., Heist, D., and Dalton, D. C. (2014). Behavior of bats at wind turbines. Proceedings of the National Academy of Sciences of the United States of America 111, 15 126–15 131.
Behavior of bats at wind turbines.Crossref | GoogleScholarGoogle Scholar |

Currylow, A., Walde, A. D., and Walde, A. M. (2016). Gopherus agassizii (Mojave desert tortoise) and Coluber flagellum piceus (red racer). Burrow associates. Herpetological Review 47, 122–123.

Dawson, W. R. (1982). Evaporative losses of water by birds. Comparative Biochemistry and Physiology. Part A, Physiology 71, 495–509.
Evaporative losses of water by birds.Crossref | GoogleScholarGoogle Scholar |

Dawson, W. R., and Bartholomew, G. A. (1968). Temperature regulation and water economy of desert birds. In ‘Desert Biology, Vol. 1’. (Ed. G. W. Brown.) pp. 357–394. (Academic Press: New York, NY, USA.)

de Lucas, M., and Perrow, M. R. (2017). Birds: collision. In ‘Wildlife and Wind Farm, Conflicts and Solutions, Vol. 1. Onshore: Potential Effects’. (Ed. M. R. Perrow.) pp. 155–190. (Pelagic Publishing: Exeter, UK.)

Dean, T. F., and Vickery, P. D. (2003). Bachman’s sparrows use burrows and palmetto clumps as escape refugia from predators. Journal of Field Ornithology 74, 26–30.
Bachman’s sparrows use burrows and palmetto clumps as escape refugia from predators.Crossref | GoogleScholarGoogle Scholar |

Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., Balvanera, P., Brauman, K. A., Butchart, S. H. M., Chan, K. M. A., Garibaldi, L. A., Ichii, K., Liu, J., Subramanian, S. M., Midgley, G. F., Miloslavich, P., Molnár, Z., Obura, D., Pfaff, A., Polasky, S., Purvis, A., Razzaque, J., Reyers, B., Chowdhury, R. R., Shin, Y. J., Visseren-Hamakers, I., Willis, K. J., and Zayas, C. N. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100.
Pervasive human-driven decline of life on Earth points to the need for transformative change.Crossref | GoogleScholarGoogle Scholar | 31831642PubMed |

Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Issac, N. J. B., and Collen, B. (2014). Defaunation in the Anthropocene. Science 345, 401–406.
Defaunation in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 25061202PubMed |

Drewitt, A. L., and Langston, R. H. W. (2006). Assessing the impacts of wind farms on birds. The Ibis 148, 29–42.
Assessing the impacts of wind farms on birds.Crossref | GoogleScholarGoogle Scholar |

Dziadzio, M. C., and Smith, L. L. (2016). Vertebrate use of gopher tortoise burrows and aprons. Southeastern Naturalist (Steuben, ME) 15, 586–594.
Vertebrate use of gopher tortoise burrows and aprons.Crossref | GoogleScholarGoogle Scholar |

Ehrlich, P., Dobkin, D. S., and Wheye, D. (1988). ‘Birder’s Handbook.’ (Simon and Schuster: New York, NY, USA.)

Erickson, W. P., Johnson, G. D., Strickland, M. D., Young, D. P., Jr, Sernka, K. J., and Good, R. E. (2001). Avian collisions with wind turbines: a summary of existing studies and comparisons to other sources of avian collision mortality in the United States. Western EcoSystems Technology, Inc. Report. National Wind Coordinating Committee, Washington, DC, USA.

Erickson, W. P., Wolfe, M. M., Bay, K. J., Johnson, D. H., and Gehring, J. L. (2014). A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities. PLoS One 9, e107491.
A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities.Crossref | GoogleScholarGoogle Scholar | 25222738PubMed |

Fleming, M. (2014). Ex. 1156 – Bird mortality at wind energy facilities in southwestern US. Palen Solar Power Project – Compliance Submission. Available at https://efiling.energy.ca.gov/URLRedirectPage.aspx?TN=TN202525_20140623T163229_Ex1156__Bird_Mortality_at_Wind_Energy_Facilities_in_Southwester.pdf [verified 24 January 2020].

Goudie, R. I., and Piatt, J. F. (1990). Body size and foraging behavior in birds. In ‘Proceedings of the 20th International Ornithological Congress’. (Eds B. D. Bell, R. O. Cossee, J. E. C. Flux, B. D. Heather, R. A. Hitchmough, C. J. R. Robertson, and M. J. Williams.) pp. 811–816. (International Ornithologists’ Union: Baton Rouge, LA, USA.)

Grover, M. C., and DeFalco, L. A. (1995). Desert tortoise (Gopherus agassizii): status-of-knowledge outline with references. General Technical Report INT-GTR-316. US Department of Agriculture, Forest Service, Intermountain Research Station, Odgen, UT, USA.

Hamel, S., Killengreen, S. T., Henden, J., Eide, N. E., Roed-Eriksen, L., Ims, R. A., and Yoccoz, N. G. (2013). Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences. Methods in Ecology and Evolution 4, 105–113.
Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences.Crossref | GoogleScholarGoogle Scholar |

Hansell, M. H. (1993). The ecological impact of animal nests and burrows. Functional Ecology 7, 5–12.
The ecological impact of animal nests and burrows.Crossref | GoogleScholarGoogle Scholar |

Harless, M. L., Walde, A. D., Delaney, D. K., Pater, L. L., and Hayes, W. K. (2009). Home range, spatial overlap, and burrow use of the desert tortoise in the west Mojave Desert. Copeia 2009, 378–389.
Home range, spatial overlap, and burrow use of the desert tortoise in the west Mojave Desert.Crossref | GoogleScholarGoogle Scholar |

Henderson, L. A., and Trulio, L. A. (2019). Can California ground squirrels reduce predation risk to burrowing owls? The Journal of Raptor Research 53, 172–179.
Can California ground squirrels reduce predation risk to burrowing owls?Crossref | GoogleScholarGoogle Scholar |

Henson, K. D., Rollins, D., Lyons, E. K., and Ransom, D. (2012). Species visitation at free-choice quail feeders in west Texas. Wildlife Society Bulletin 36, 735–740.
Species visitation at free-choice quail feeders in west Texas.Crossref | GoogleScholarGoogle Scholar |

Higgins, K. F., Osborn, R. G., Dieter, C. D., and Usgaard, R. E. (1996). Monitoring of seasonal bird activity and mortality at the Buffalo Ridge Wind Resource Area, Minnesota, 1994–1995. Completion Report by the South Dakota Cooperative Fish and Wildlife Research Unit. (Kenetech Windpower, Inc.: Brookings, SD, USA.)

Horn, J. W., Arnett, E. B., and Kunz, T. H. (2008). Behavioral responses of bats to operating wind turbines. The Journal of Wildlife Management 72, 123–132.
Behavioral responses of bats to operating wind turbines.Crossref | GoogleScholarGoogle Scholar |

Hötker, H. (2017). Birds: displacement. In ‘Wildlife and Wind Farm, Conflicts and Solutions, Vol. 1. Onshore: Potential Effects’. (Ed. M. R. Perrow.) pp. 119–154. (Pelagic Publishing: Exeter, UK.)

Howell, J. A. (1997). Avian mortality at rotor swept area equivalents, Altamont Pass and Montezuma Hills, California. Transactions of the Western Section of the Wildlife Society 33, 24–29.

Iknayan, K. J., and Beissinger, S. R. (2018). Collapse of a desert bird community over the past century driven by climate change. Proceedings of the National Academy of Sciences of the United States of America 115, 8597–8602.
Collapse of a desert bird community over the past century driven by climate change.Crossref | GoogleScholarGoogle Scholar | 30082401PubMed |

Jackson, D. R., and Milstrey, E. G. (1989). The fauna of gopher tortoise burrows. In ‘Proceedings of the Gopher Tortoise Relocation Symposium’. (Eds J. E. Diemer, D. R. Jackson, J. L. Landers, J. N. Layne, and D. A. Wood.) pp. 86–98. Florida Game and Fresh Water Fish Commission, Nongame Wildlife Program Technical Report, Tallahassee, FL, USA.

Jenkins, S. H., Rothstein, A., and Green, W. C. H. (1995). Food hoarding by Merriam’s kangaroo rats: a test of alternative hypotheses. Ecology 76, 2470–2481.
Food hoarding by Merriam’s kangaroo rats: a test of alternative hypotheses.Crossref | GoogleScholarGoogle Scholar |

Johnson, G. D., and Stephens, S. E. (2011). Wind power and biofuels: a green dilemma for wildlife conservation. In ‘Energy Development and Wildlife Conservation in Western North America’. (Ed. D. E. Naugle.) pp. 131–155. (Island Press: Washington, DC, USA.

Johnson, G. D., Young, D. P., Erickson, W. P., Strickland, M. D., Good, R. E., and Becker, P. (2001). Avian and bat mortality associated with the initial phase of the Foote Creek Rim Windpower Project, Carbon County, Wyoming: November 3, 1998–October 31, 2000. Technical report by Western EcoSystems Technology Inc. SeaWest Windpower, Inc., San Diego, CA, USA; Bureau of Land Management, Rawlins District Office, Rawlins, WY, USA.

Johnson, S. A., Ober, H. K., and Adams, D. C. (2017). Are keystone species effective umbrellas for habitat conservation? A spatially explicit approach. Journal for Nature Conservation 37, 47–55.
Are keystone species effective umbrellas for habitat conservation? A spatially explicit approach.Crossref | GoogleScholarGoogle Scholar |

Kaufman, K. (2001). ‘Lives of North American Birds.’ (Houghton Mifflin Harcourt: Boston, MA, USA.)

Kinlaw, A. (1999). A review of burrowing by semi-fossorial vertebrates in arid environments. Journal of Arid Environments 41, 127–145.
A review of burrowing by semi-fossorial vertebrates in arid environments.Crossref | GoogleScholarGoogle Scholar |

Kucera, T. E., and Barrett, R. H. (2011). A history of camera trapping. In ‘Camera Traps in Animal Ecology’. (Eds A. F. O’Connell, J. D. Nichols, and K. U. Karanth.) pp. 9–26. (Springer: New York, NY, USA.)

Kuvlesky, W. P., Brennan, L. A., Morrison, M. L., Boydston, K. K., Ballard, B. M., and Bryant, F. C. (2007). Wind energy development and wildlife conservation: challenges and opportunities. The Journal of Wildlife Management 71, 2487–2498.
Wind energy development and wildlife conservation: challenges and opportunities.Crossref | GoogleScholarGoogle Scholar |

Langston, R. H. W. (2013). Birds and wind projects across the pond: a UK perspective. Wildlife Society Bulletin 37, 5–18.
Birds and wind projects across the pond: a UK perspective.Crossref | GoogleScholarGoogle Scholar |

Levey, D. J., Duncan, R. S., and Levins, C. F. (2004). Animal behaviour: use of dung as a tool by burrowing owls. Nature 431, 39.
Animal behaviour: use of dung as a tool by burrowing owls.Crossref | GoogleScholarGoogle Scholar | 15343324PubMed |

Loss, S. R., Will, T., and Marra, P. P. (2013). Estimates of bird collision mortality at wind facilities in the contiguous United States. Biological Conservation 168, 201–209.
Estimates of bird collision mortality at wind facilities in the contiguous United States.Crossref | GoogleScholarGoogle Scholar |

Lovich, J. E. (2015). Golden eagle mortality at a wind-energy facility in Palm Springs, California. Western Birds 46, 76–80.

Lovich, J. E., and Daniels, R. (2000). Environmental characteristics of desert tortoise (Gopherus agassizii) burrow locations in an altered industrial landscape. Chelonian Conservation and Biology 3, 714–721.

Lovich, J. E., and Ennen, J. R. (2013). Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife. Applied Energy 103, 52–60.
Assessing the state of knowledge of utility-scale wind energy development and operation on non-volant terrestrial and marine wildlife.Crossref | GoogleScholarGoogle Scholar |

Lovich, J. E., and Ennen, J. R. (2017). Reptiles and amphibians. In ‘Wildlife and Wind Farms, Conflicts and Solutions, Vol. 1. Onshore: Potential Effects’. (Ed. M. R. Perrow.) pp. 97–118. (Pelagic Publishing: Exeter, UK.)

Lovich, J. E., Ennen, J. R., Madrak, S., Meyer, K., Loughran, C., Bjurlin, C., Arundel, T. R., Turner, W., Jones, C., and Groenendaal, G. M. (2011). Effects of wind energy production on growth, demography, and survivorship of a desert tortoise (Gopherus agassizii) population in southern California with comparisons to natural populations. Herpetological Conservation and Biology 6, 161–174.

Lovich, J. E., Delaney, D., Briggs, J., Agha, M., Austin, M., and Reese, J. (2014). Black bears (Ursus americanus) as a novel potential predator of Agassiz’s desert tortoises (Gopherus agassizii) at a California wind energy facility. Bulletin of the Southern California Academy of Sciences 113, 34–41.
Black bears (Ursus americanus) as a novel potential predator of Agassiz’s desert tortoises (Gopherus agassizii) at a California wind energy facility.Crossref | GoogleScholarGoogle Scholar |

Lovich, J. E., Agha, M., Ennen, J. R., Arundel, T. R., and Austin, M. (2018a). Agassiz’s desert tortoise (Gopherus agassizii) activity areas are little changed after wind turbine-induced fires in California. International Journal of Wildland Fire 27, 851–856.
Agassiz’s desert tortoise (Gopherus agassizii) activity areas are little changed after wind turbine-induced fires in California.Crossref | GoogleScholarGoogle Scholar |

Lovich, J. E., Ennen, J. R., Agha, M., and Gibbons, J. W. (2018b). Where have all the turtles gone, and why does it matter? Bioscience 68, 771–781.
Where have all the turtles gone, and why does it matter?Crossref | GoogleScholarGoogle Scholar |

Luckenbach, R. A. (1982). Ecology and management of the desert tortoise (Gopherus agassizii) in California. North American Tortoises: Conservation and Ecology. US Fish and Wildlife Service. Wildlife Research Report 12, 1–38.

Maclean, G. L. (1996). ‘Ecophysiology of Desert Birds.’ (Springer-Verlag: New York, NY, USA.)

Meek, P., and Fleming, P. (Eds) (2014). ‘Camera Trapping: Wildlife Management and Research.’ (CSIRO Publishing: Melbourne, Vic., Australia.)

Meek, P. D., Ballard, G. A., and Fleming, P. J. (2015). The pitfalls of wildlife camera trapping as a survey tool in Australia. Australian Mammalogy 37, 13–22.
The pitfalls of wildlife camera trapping as a survey tool in Australia.Crossref | GoogleScholarGoogle Scholar |

Miller, E. H. (1988). Description of Bird Behavior for Comparative Purposes. In ‘Current Ornithology, vol 5’. (Ed. R. F. Johnston.) pp. 347–394. (Springer: Boston, MA, USA.)

Mills, L. S., Soulé, M. E., and Doak, D. F. (1993). The keystone-species concept in ecology and conservation. Bioscience 43, 219–224.
The keystone-species concept in ecology and conservation.Crossref | GoogleScholarGoogle Scholar |

Mittermeier, C. G., Konstant, W. R., Lovich, R. E., and Lovich, J. E. (2002). The Mojave Desert. In ‘Wilderness: Earth’s Last Wild Places’. (Eds R. Mittermeier, C. G. Mittermeier, G. P. Robles, G. Fonseca, T. Brooks, J. Pilgrim, and W. R. Konstant.) pp. 351–356. (CEMEX: Mexico.)

Morrison, M., Sinclair, K., and Thelander, C. (2007). A sampling framework for conducting studies of the influence of wind energy developments on birds and other animals. In ‘Birds and Wind Farms’. (Eds M. de Lucas, G. Janss, and M. Ferrer.) pp. 101–115. (Quercas Editorial: Madrid, Spain.)

O’Brien, T. G., and Kinnaird, M. F. (2008). A picture is worth a thousand words: the application of camera trapping to the study of birds. Bird Conservation International 18, S144–S162.
A picture is worth a thousand words: the application of camera trapping to the study of birds.Crossref | GoogleScholarGoogle Scholar |

O’Connell, A. F., Nichols, J. D., and Karanth, K. U. (Eds) (2010). ‘Camera Traps in Animal Ecology: Methods and Analyses.’ (Springer: New York, NY, USA.)

Osborn, R. G., Dieter, C. D., Higgins, K. F., and Usgaard, R. E. (1998). Bird flight characteristics near wind turbines in Minnesota. American Midland Naturalist 139, 29–38.
Bird flight characteristics near wind turbines in Minnesota.Crossref | GoogleScholarGoogle Scholar |

Pearce-Higgins, J. W., Stephen, L., Langston, R. H., Bainbridge, I. P., and Bullman, R. (2009). The distribution of breeding birds around upland wind farms. Journal of Applied Ecology 46, 1323–1331.
The distribution of breeding birds around upland wind farms.Crossref | GoogleScholarGoogle Scholar |

Pearson, O. P. (1960). Habits of Microtus californicus revealed by automatic photographic recorders. Ecological Monographs 30, 231–250.
Habits of Microtus californicus revealed by automatic photographic recorders.Crossref | GoogleScholarGoogle Scholar |

Pimm, S. L., Jenkins, C. N., Abell, R., Brooks, T. M., Gittleman, J. L., Joppa, L. N., Raven, P. H., Roberts, C. M., and Sexton, J. O. (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752.
The biodiversity of species and their rates of extinction, distribution, and protection.Crossref | GoogleScholarGoogle Scholar | 24876501PubMed |

Pittman, J. A. (1960). Bachman’s sparrow hiding in a burrow. The Auk 77, 80.
Bachman’s sparrow hiding in a burrow.Crossref | GoogleScholarGoogle Scholar |

Poulin, R. G., Todd, L. D., Dohms, K., Brigham, R. M., and Wellicome, T. I. (2005). Factors associated with nest-and roost-burrow selection by burrowing owls (Athene cunicularia) on the Canadian prairies. Canadian Journal of Zoology 83, 1373–1380.
Factors associated with nest-and roost-burrow selection by burrowing owls (Athene cunicularia) on the Canadian prairies.Crossref | GoogleScholarGoogle Scholar |

Pruett, C. L., Patten, M. A., and Wolfe, D. H. (2009a). It’s not easy being green: wind energy and a declining grassland bird. Bioscience 59, 257–262.
It’s not easy being green: wind energy and a declining grassland bird.Crossref | GoogleScholarGoogle Scholar |

Pruett, C. L., Patten, M. A., and Wolfe, D. H. (2009b). Avoidance behavior by prairie grouse: implications for development of wind energy. Conservation Biology 23, 1253–1259.
Avoidance behavior by prairie grouse: implications for development of wind energy.Crossref | GoogleScholarGoogle Scholar | 19500121PubMed |

Randler, C., and Kalb, N. (2018). Distance and size matters: a comparison of six wildlife camera traps and their usefulness for wild birds. Ecology and Evolution 8, 7151–7163.
Distance and size matters: a comparison of six wildlife camera traps and their usefulness for wild birds.Crossref | GoogleScholarGoogle Scholar | 30073074PubMed |

Rich, L. N., Furnas, B. J., Newton, D. S., and Brashares, J. S. (2019). Acoustic and camera surveys inform models of current and future vertebrate distributions in a changing desert ecosystem. Diversity & Distributions 25, 1441–1456.
Acoustic and camera surveys inform models of current and future vertebrate distributions in a changing desert ecosystem.Crossref | GoogleScholarGoogle Scholar |

Robel, R. (2002). Expected impacts on greater prairie-chickens of establishing a wind turbine facility near Rosalia, Kansas. Final report. Zilkha Renewable Energy, Houston, TX, USA.

Rosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P. A., Stanton, J. C., Panjabi, A., Helft, L., Parr, M., and Marra, P. P. (2019). Decline of the North American avifauna. Science 366, 120–124.
Decline of the North American avifauna.Crossref | GoogleScholarGoogle Scholar | 31604313PubMed |

Rovero, F., Tobler, M., and Sanderson, J. (2010). Camera-trapping for inventorying terrestrial vertebrates. In ‘Manual on field recording techniques and protocols for All Taxa Biodiversity Inventories and Monitoring’. (Eds J. Eymann, J. Degreef, C. Häuser, J. C. Monje, Y. Samyn, and D. Van den Spiegel.) pp. 100–128. (Belgian Development Cooperation: Belgium.)

Rovero, F., Zimmermann, F., Berzi, D., and Meek, P. (2013). Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix, the Italian Journal of Mammalogy 24, 148–156.

Rowcliffe, J. M., and Carbone, C. (2008). Surveys using camera traps: are we looking to a brighter future? Animal Conservation 11, 185–186.
Surveys using camera traps: are we looking to a brighter future?Crossref | GoogleScholarGoogle Scholar |

Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C., and Jansen, P. A. (2014). Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution 5, 1170–1179.
Quantifying levels of animal activity using camera trap data.Crossref | GoogleScholarGoogle Scholar |

Rugge, L. M. (2001). An avian risk behavior and mortality assessment at the Altamont Pass Wind Resource Area in Livermore, California. M.S. Thesis, California State University, Sacramento, CA, USA.

Rundel, P. W., and Gibson, A. C. (1996). ‘Ecological Communities and Processes in a Mojave Desert Ecosystem.’ (Cambridge University Press: Cambridge.)

Rutz, C., Bluff, L. A., Weir, A. A. S., and Kacelnik, A. (2007). Video cameras on wild birds. Science 318, 765.
Video cameras on wild birds.Crossref | GoogleScholarGoogle Scholar | 17916693PubMed |

Saidur, R., Rahim, N. A., Islam, M. R., and Solangi, K. H. (2011). Environmental impact of wind energy. Renewable & Sustainable Energy Reviews 15, 2423–2430.
Environmental impact of wind energy.Crossref | GoogleScholarGoogle Scholar |

Sánchez-García, C., Buner, F. D., and Aebischer, N. J. (2015). Supplementary winter food for gamebirds through feeders: which species actually benefit? The Journal of Wildlife Management 79, 832–845.
Supplementary winter food for gamebirds through feeders: which species actually benefit?Crossref | GoogleScholarGoogle Scholar |

Schoenherr, A. A. (1992). ‘A Natural History of California.’ (University of California Press: Oakland, CA, USA.)

Seki, S. (2010). Camera-trapping at artificial bathing sites provides a snapshot of a forest bird community. Journal of Forest Research 15, 307–315.
Camera-trapping at artificial bathing sites provides a snapshot of a forest bird community.Crossref | GoogleScholarGoogle Scholar |

Sjoberg, D. E., Young, J. A., McAdoo, K., and Evans, R. A. (1984). Kangaroo rats. Rangelands Archives 6, 11–13.

Smallwood, K. S. (2013). Comparing bird and bat fatality-rate estimates among North American wind-energy projects. Wildlife Society Bulletin 37, 19–33.
Comparing bird and bat fatality-rate estimates among North American wind-energy projects.Crossref | GoogleScholarGoogle Scholar |

Smallwood, K. S. (2017). Monitoring birds. In ‘Wildlife and Wind Farms, Conflicts and Solutions, Vol. 2. Onshore: Monitoring and Mitigation’. (Ed. M. R. Perrow.) pp. 1–30. (Pelagic Publishing: Exeter, UK.)

Smallwood, K. S., and Thelander, C. (2004). Developing methods to reduce bird mortality in the Altamont Pass Wind Resource Area. Final Report. California Energy Commission, Sacramento, CA, USA.

Smallwood, K. S., and Thelander, C. (2005). Bird mortality at the Altamont Pass wind resource area, March 1998–September 2001. Final report NREL/SR-500–36973. National Renewable Energy Laboratory, Golden, CO, USA.

Smallwood, K. S., and Thelander, C. (2008). Bird mortality in the Altamont Pass wind resource area, California. The Journal of Wildlife Management 72, 215–223.
Bird mortality in the Altamont Pass wind resource area, California.Crossref | GoogleScholarGoogle Scholar |

Smallwood, K. S., Rugge, S., Hoover, S., Morrison, J. L., and Thelander, C. (2001). Intra- and inter-turbine string comparison of fatalities to animal burrow densities at Altamont Pass. In ‘Proceedings of the National Avian-Wind Power Planning Meeting IV’. (Ed. S. S. Schwartz.) pp. 23–27. (RESOLVE, Inc.: Washington, DC, USA.)

Smallwood, K. S., Thelander, C. G., Morrison, M. L., and Rugge, L. M. (2007). Burrowing owl mortality in the Altamont Pass wind resource area. The Journal of Wildlife Management 71, 1513–1524.
Burrowing owl mortality in the Altamont Pass wind resource area.Crossref | GoogleScholarGoogle Scholar |

Smallwood, K. S., Bell, D. A., Walther, E. L., Leyvas, E., Standish, S., Mount, J., and Karas, B. (2018). Estimating wind turbine fatalities using integrated detection trials. The Journal of Wildlife Management 82, 1169–1184.
Estimating wind turbine fatalities using integrated detection trials.Crossref | GoogleScholarGoogle Scholar |

Stein, A. B., Fuller, T. K., and Marker, L. L. (2008). Opportunisitic use of camera traps to assess habitat-specific mammal and bird diversity in northcentral Namibia. Biodiversity and Conservation 17, 3579–3587.
Opportunisitic use of camera traps to assess habitat-specific mammal and bird diversity in northcentral Namibia.Crossref | GoogleScholarGoogle Scholar |

Stevenson, H. M., and Anderson, B. H. (1994). ‘The Birdlife of Florida.’ (University Press of Florida: Gainesville, FL, USA.)

Stewart, G. B., Pullin, A. S., and Coles, C. F. (2007). Poor evidence-base for assessment of windfarm impacts on birds. Environmental Conservation 34, 1–11.
Poor evidence-base for assessment of windfarm impacts on birds.Crossref | GoogleScholarGoogle Scholar |

Strickland, M. D., Johnson, G., Erickson, W. P., and Kronner, K. (2001). Avian studies at wind plants located at Buffalo Ridge, Minnesota and Vansycle Ridge, Oregon. In ‘Proceedings of the National Avian–Wind Power Planning Meeting IV’. (Ed. S. S. Schwartz.) pp. 38–52. (RESOLVE, Inc.: Washington, DC, USA.)

Thelander, C. G., Smallwood, K. S., and Rugge, L. (2003). Bird risk behaviors and fatalities at the Altamont Pass Wind Resource Area: Period of Performance March 1998–December 2000. Final report by BioResource Consultants. National Renewable Energy Laboratory,Golden, CO, USA.

Vella, G. (2017). The nature of wind farms. In ‘Wildlife and Wind Farm, Conflicts and Solutions, Vol. 1. Onshore: Potential Effects’. (Ed. M. R. Perrow.) pp. 1–23 (Pelagic Publishing: Exeter, UK.)

Walde, A. D., Walde, A. M., Delaney, D. K., and Pater, L. L. (2009). Burrows of desert tortoises (Gopherus agassizii) as thermal refugia for horned larks (Eremophila alpestris) in the Mojave Desert. The Southwestern Naturalist 54, 375–381.
Burrows of desert tortoises (Gopherus agassizii) as thermal refugia for horned larks (Eremophila alpestris) in the Mojave Desert.Crossref | GoogleScholarGoogle Scholar |

Walde, A. D., Walde, A. M., and Woodman, A. P. (2016). Gopherus agassizii (Mojave desert tortoise). Burrow associate. Herpetological Review 47, 122.

Walde, A. D., Jones, C., and Trageser, S. (2018). Gopherus agassizii (Mojave desert tortoise). Burrow associate. Herpetological Review 49, 318–319.

Walker, L. R., and Landau, F. H. (2018). ‘A Natural History of the Mojave Desert.’ (University of Arizona Press: Tucson, AZ, USA.)

Walsberg, G. E. (1985). Physiological consequences of microhabitat selection. In ‘Habitat Selection in Birds’. (Ed. M. L. Cody.) pp. 389–413. (Academic Press: Orlando, FL, USA.)

White, K. N., and Tuberville, T. D. (2017). Birds and burrows: avifauna use and visitation of burrows of gopher tortoises at two military sites in the Florida panhandle. The Wilson Journal of Ornithology 129, 792–803.
Birds and burrows: avifauna use and visitation of burrows of gopher tortoises at two military sites in the Florida panhandle.Crossref | GoogleScholarGoogle Scholar |

Whitford, W. G., and Kay, F. R. (1999). Biopedturbation by mammals in deserts: a review. Journal of Arid Environments 41, 203–230.
Biopedturbation by mammals in deserts: a review.Crossref | GoogleScholarGoogle Scholar |

Williams, J. B., and Tieleman, B. I. (2001). Physiological ecology and behavior of desert birds. In ‘Current ornithology’. (Eds V. Nolan and C. F. Thompson.) pp. 299–353. (Springer: Boston, MA, USA.)

Williams, J. B., and Tieleman, B. I. (2005). Physiological adaptation in desert birds. Bioscience 55, 416–425.
Physiological adaptation in desert birds.Crossref | GoogleScholarGoogle Scholar |

Williams, J. B., Bradshaw, D., and Schmidt, L. (1995). Field metabolism and water requirements of spinifex pegeons (Geophaps plumifera) in Western Australia. Australian Journal of Zoology 43, 1–15.
Field metabolism and water requirements of spinifex pegeons (Geophaps plumifera) in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Williams, J. B., Tieleman, B. I., and Shobrak, M. (1999). Lizard burrows provide thermal refugia for larks in the Arabian Desert. The Condor 101, 714–717.
Lizard burrows provide thermal refugia for larks in the Arabian Desert.Crossref | GoogleScholarGoogle Scholar |

Wolf, B. O., and Walsberg, G. E. (1996). Thermal effects of radiation and wind on a small bird and implications for microsite selection. Ecology 77, 2228–2236.
Thermal effects of radiation and wind on a small bird and implications for microsite selection.Crossref | GoogleScholarGoogle Scholar |

Wolf, B. O., Wooden, K. M., and Walsberg, G. E. (1996). The use of thermal refugia by two small desert birds. The Condor 98, 424–428.
The use of thermal refugia by two small desert birds.Crossref | GoogleScholarGoogle Scholar |

Woodbury, A. M., and Hardy, R. (1948). Studies of the desert tortoise, Gopherus agassizii. Ecological Monographs 18, 145–200.
Studies of the desert tortoise, Gopherus agassizii.Crossref | GoogleScholarGoogle Scholar |

WWF (2020). ‘Living Planet Report 2020 – Bending the curve of biodiversity loss.’ (Eds R. E. A. Almond, M. Grooten, and T. Petersen.) (WWF: Gland, Switzerland.)

Young, D. P., Jr, Erickson, W. P., Strickland, M. D., Good, R. E., and Sernka, K. J. (2003). Comparison of avian responses to UV-light-reflective paint on wind turbines. Period of Performance July 1999–December 2000. Subcontractor report by Western EcoSystems Technology, Inc. National Renewable Energy Laboratory, Golden, CO, USA.

Zimmerman, L. C., O’Connor, M. P., Bulova, S. J., Spotila, J. R., Kemp, S. J., and Salice, C. J. (1994). Thermal ecology of desert tortoises in the eastern Mojave Desert: seasonal patterns of operative and body temperatures, and microhabitat selection. Herpetological Monograph 8, 45–59.
Thermal ecology of desert tortoises in the eastern Mojave Desert: seasonal patterns of operative and body temperatures, and microhabitat selection.Crossref | GoogleScholarGoogle Scholar |