Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Post-release immune responses of Tasmanian devils vaccinated with an experimental devil facial tumour disease vaccine

Ruth Pye https://orcid.org/0000-0002-1001-3329 A G , Jocelyn Darby A , Andrew S. Flies A , Samantha Fox B F , Scott Carver C , Jodie Elmer B , Kate Swift B , Carolyn Hogg D , David Pemberton B , Gregory Woods A and A. Bruce Lyons E G
+ Author Affiliations
- Author Affiliations

A Menzies Institute for Medical Research, University of Tasmania, 17 Liverpool Street, Hobart, Tas. 7000, Australia.

B Department of Primary Industries, Parks, Water and the Environment, 134 Macquarie Street, Hobart, Tas. 7000, Australia.

C Department of Biological Sciences, University of Tasmania, Private Bag 51, Tas. 7001, Australia.

D Australasian Wildlife Genomics Group, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2050, Australia.

E Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, Tas. 7000, Australia.

F Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA.

G Corresponding authors. Email: ruth.pye@utas.edu.au; bruce.lyons@utas.edu.au

Wildlife Research 48(8) 701-712 https://doi.org/10.1071/WR20210
Submitted: 11 December 2020  Accepted: 15 May 2021   Published: 9 December 2021

Abstract

Context: Disease is increasingly becoming a driver of wildlife population declines and an extinction risk. Vaccines are one of the most successful health interventions in human history, but few have been tested for mitigating wildlife disease. The transmissible cancer, devil facial tumour disease (DFTD), triggered the Tasmanian devil’s (Sarcophilus harrisii) inclusion on the international endangered species list. In 2016, 33 devils from a DFTD-free insurance population were given an experimental DFTD vaccination before their wild release on the Tasmanian northern coast.

Aim: To determine the efficacy of the vaccination protocol and the longevity of the induced responses.

Method: Six trapping trips took place over the 2.5 years following release, and both vaccinated and incumbent devils had blood samples and tumour biopsies collected.

Key results: In all, 8 of the 33 vaccinated devils were re-trapped, and six of those developed DFTD within the monitoring period. Despite the lack of protection provided by the vaccine, we observed signs of immune activation not usually found in unvaccinated devils. First, sera collected from the eight devils showed that anti-DFTD antibodies persisted for up to 2 years post-vaccination. Second, tumour-infiltrating lymphocytes were found in three of four biopsies collected from vaccinated devils, which contrasts with the ‘immune deserts’ typical of DFTs; only 1 of the 20 incumbent devils with DFTD had a tumour biopsy exhibiting immune-cell infiltrate. Third, immunohistochemical analysis of the vaccinated devils’ tumour biopsies identified the functional immune molecules associated with antigen-presenting cells (MHC-II) and T-cells (CD3), and the immune checkpoint molecule PD-1, all being associated with anti-tumour immunity in other species.

Conclusions: These results correlate with our previous study on captive devils in which a prophylactic vaccine primed the devil immune system and, following DFTD challenge and tumour growth, immunotherapy induced complete tumour regressions. The field trial results presented here provide further evidence that the devil immune system can be primed to recognise DFTD cells, but additional immune manipulation could be needed for complete protection or induction of tumour regressions.

Implications: A protective DFTD vaccine would provide a valuable management approach for conservation of the Tasmanian devil.

Keywords: devil facial tumour disease, transmissible cancer, vaccine, immunohistochemistry.


References

Abraham, S., Juel, H. B., Bang, P., Cheeseman, H. M., Dohn, R. B., Cole, T., Kristiansen, M. P., Korsholm, K. S., Lewis, D., Olsen, A. W., Mcfarlane, L. R., Day, S., Knudsen, S., Moen, K., Ruhwald, M., Kromann, I., Andersen, P., Shattock, R. J., and Follmann, F. (2019). Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial. The Lancet. Infectious Diseases 19, 1091–1100.
Safety and immunogenicity of the chlamydia vaccine candidate CTH522 adjuvanted with CAF01 liposomes or aluminium hydroxide: a first-in-human, randomised, double-blind, placebo-controlled, phase 1 trial.Crossref | GoogleScholarGoogle Scholar | 31416692PubMed |

Azuma, T., Yao, S., Zhu, G., Flies, A. S., Flies, S. J., and Chen, L. (2008). B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111, 3635–3643.
B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells.Crossref | GoogleScholarGoogle Scholar | 18223165PubMed |

Berghoff, A. S., Fuchs, E., Ricken, G., Mlecnik, B., Bindea, G., Spanberger, T., Hackl, M., Widhalm, G., Dieckmann, K., Prayer, D., Bilocq, A., Heinzl, H., Zielinski, C., Bartsch, R., Birner, P., Galon, J., and Preusser, M. (2016). Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. OncoImmunology 5, e1057388.
Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases.Crossref | GoogleScholarGoogle Scholar | 26942067PubMed |

Cheng, Y., Heasman, K., Peck, S., Peel, E., Gooley, R. M., Papenfuss, A. T., Hogg, C. J., and Belov, K. (2017). Significant decline in anticancer immune capacity during puberty in the Tasmanian devil. Scientific Reports 7, 44716.
Significant decline in anticancer immune capacity during puberty in the Tasmanian devil.Crossref | GoogleScholarGoogle Scholar | 28300197PubMed |

Duan, Q., Zhang, H., Zheng, J., and Zhang, L. (2020). Turning cold into hot: firing up the tumor microenvironment. Trends in Cancer 6, 605–618.
Turning cold into hot: firing up the tumor microenvironment.Crossref | GoogleScholarGoogle Scholar | 32610070PubMed |

Dujon, A. M., Gatenby, R. A., Bramwell, G., Macdonald, N., Dohrmann, E., Raven, N., Schultz, A., Hamede, R., Gerard, A. L., Giraudeau, M., Thomas, F., and Ujvari, B. (2020). Transmissible cancers in an evolutionary perspective. iScience 23, 101269.
Transmissible cancers in an evolutionary perspective.Crossref | GoogleScholarGoogle Scholar | 32592998PubMed |

Dujon, A. M., Bramwell, G., Roche, B., Thomas, F., and Ujvari, B. (2021). Transmissible cancers in mammals and bivalves: how many examples are there? Predictions indicate widespread occurrence. BioEssays 43, e2000222.
Transmissible cancers in mammals and bivalves: how many examples are there? Predictions indicate widespread occurrence.Crossref | GoogleScholarGoogle Scholar | 33210313PubMed |

Flies, A. S., Mansfield, L. S., Grant, C. K., Weldele, M. L., and Holekamp, K. E. (2015). Markedly elevated antibody responses in wild versus captive spotted hyenas show that environmental and ecological factors are important modulators of immunity. PLoS One 10, e0137679.
Markedly elevated antibody responses in wild versus captive spotted hyenas show that environmental and ecological factors are important modulators of immunity.Crossref | GoogleScholarGoogle Scholar | 26444876PubMed |

Flies, A. S., Lyons, A. B., Corcoran, L. M., Papenfuss, A. T., Murphy, J. M., Knowles, G. W., Woods, G. M., and Hayball, J. D. (2016). PD-L1 is not constitutively expressed on Tasmanian devil facial tumor cells but is strongly upregulated in response to IFN-γ and can be expressed in the tumor microenvironment. Frontiers in Immunology 7, 581.
PD-L1 is not constitutively expressed on Tasmanian devil facial tumor cells but is strongly upregulated in response to IFN-γ and can be expressed in the tumor microenvironment.Crossref | GoogleScholarGoogle Scholar | 28018348PubMed |

Flies, A. S., Darby, J. M., Lennard, P. R., Murphy, P. R., Ong, C. E. B., Pinfold, T. L., De Luca, A., Lyons, A. B., Woods, G. M., and Patchett, A. L. (2020a). A novel system to map protein interactions reveals evolutionarily conserved immune evasion pathways on transmissible cancers. Science Advances 6, eaba5031.
A novel system to map protein interactions reveals evolutionarily conserved immune evasion pathways on transmissible cancers.Crossref | GoogleScholarGoogle Scholar | 32937435PubMed |

Flies, A. S., Flies, E. J., Fox, S., Gilbert, A., Johnson, S. R., Liu, G. S., Lyons, A. B., Patchett, A. L., Pemberton, D., and Pye, R. J. (2020b). An oral bait vaccination approach for the Tasmanian devil facial tumor diseases. Expert Review of Vaccines 19, 1–10.
An oral bait vaccination approach for the Tasmanian devil facial tumor diseases.Crossref | GoogleScholarGoogle Scholar | 31971036PubMed |

Fox, S., and Seddon, P. J. (2019). Wild devil recovery: managing devils in the presence of disease. In ‘Saving the Tasmanian devil: recovery through science-based management’. (Eds C. Hogg, S. Fox, D. Pemberton, and K. Belov.) pp. 157–163. (CSIRO Publishing: Melbourne, Vic., Australia.)

Gartrell, B. D., Alley, M. R., Mack, H., Donald, J., Mcinnes, K., and Jansen, P. (2005). Erysipelas in the critically endangered kakapo (Strigops habroptilus). Avian Pathology 34, 383–387.
Erysipelas in the critically endangered kakapo (Strigops habroptilus).Crossref | GoogleScholarGoogle Scholar | 16236568PubMed |

Grueber, C. E., Reid-Wainscoat, E. E., Fox, S., Belov, K., Shier, D. M., Hogg, C. J., and Pemberton, D. (2017). Increasing generations in captivity is associated with increased vulnerability of Tasmanian devils to vehicle strike following release to the wild. Scientific Reports 7, 2161.
Increasing generations in captivity is associated with increased vulnerability of Tasmanian devils to vehicle strike following release to the wild.Crossref | GoogleScholarGoogle Scholar | 28526824PubMed |

Hawkins, C. E., Baars, C., Hesterman, H., Hocking, G. J., Jones, M. E., Lazenby, B., Mann, D., Mooney, N., Pemberton, D., Pyecroft, S., Restani, M., and Wiersma, J. (2006). Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii. Biological Conservation 131, 307–324.
Emerging disease and population decline of an island endemic, the Tasmanian devil Sarcophilus harrisii.Crossref | GoogleScholarGoogle Scholar |

Khan, S. A., Polkinghorne, A., Waugh, C., Hanger, J., Loader, J., Beagley, K., and Timms, P. (2016). Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine. Vaccine 34, 775–782.
Humoral immune responses in koalas (Phascolarctos cinereus) either naturally infected with Chlamydia pecorum or following administration of a recombinant chlamydial major outer membrane protein vaccine.Crossref | GoogleScholarGoogle Scholar | 26747718PubMed |

Kwon, Y. M., Gori, K., Park, N., Potts, N., Swift, K., Wang, J., Stammnitz, M. R., Cannell, N., Baez-Ortega, A., Comte, S., Fox, S., Harmsen, C., Huxtable, S., Jones, M., Kreiss, A., Lawrence, C., Lazenby, B., Peck, S., Pye, R., Woods, G., Zimmermann, M., Wedge, D. C., Pemberton, D., Stratton, M. R., Hamede, R., and Murchison, E. P. (2020). Evolution and lineage dynamics of a transmissible cancer in Tasmanian devils. PLoS Biology 18, e3000926.
Evolution and lineage dynamics of a transmissible cancer in Tasmanian devils.Crossref | GoogleScholarGoogle Scholar | 33232318PubMed |

Lachish, S., Jones, M., and Mccallum, H. (2007). The impact of disease on the survival and population growth rate of the Tasmanian devil. Journal of Animal Ecology 76, 926–936.
The impact of disease on the survival and population growth rate of the Tasmanian devil.Crossref | GoogleScholarGoogle Scholar |

Lachish, S., Mccallum, H., and Jones, M. (2009). Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). Journal of Animal Ecology 78, 427–436.
Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar |

Langwig, K. E., Voyles, J., Wilber, M. Q., Frick, W. F., Murray, K. A., Bolker, B. M., Collins, J. P., Cheng, T. L., Fisher, M. C., Hoyt, J. R., Lindner, D. L., Mccallum, H. I., Puschendorf, R., Rosenblum, E. B., Toothman, M., Willis, C. K. R., Briggs, C. J., and Kilpatrick, A. M. (2015). Context-dependent conservation responses to emerging wildlife diseases. Frontiers in Ecology and the Environment 13, 195–202.
Context-dependent conservation responses to emerging wildlife diseases.Crossref | GoogleScholarGoogle Scholar |

Lazenby, B. T., Tobler, M. W., Brown, W. E., Hawkins, C. E., Hocking, G. J., Hume, F., Huxtable, S., Iles, P., Jones, M. E., Lawrence, C., Thalmann, S., Wise, P., Williams, H., Fox, S., and Pemberton, D. (2018). Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils. Journal of Applied Ecology 55, 1368–1379.
Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils.Crossref | GoogleScholarGoogle Scholar |

Leung, J. M., Budischak, S. A., The, H. C., Hansen, C., Bowcutt, R., Neill, R., Shellman, M., Loke, P. N., and Graham, A. L. (2018). Rapid environmental effects on gut nematode susceptibility in rewilded mice. PLoS Biology 16, e2004108.
Rapid environmental effects on gut nematode susceptibility in rewilded mice.Crossref | GoogleScholarGoogle Scholar | 29518091PubMed |

Liu, Y., and Cao, X. (2015). The origin and function of tumor-associated macrophages. Cellular & Molecular Immunology 12, 1–4.
The origin and function of tumor-associated macrophages.Crossref | GoogleScholarGoogle Scholar |

Lizárraga, D., Carver, S., and Timms, P. (2019). Navigating to the most promising directions amid complex fields of vaccine development: a chlamydial case study. Expert Review of Vaccines 18, 1323–1337.
Navigating to the most promising directions amid complex fields of vaccine development: a chlamydial case study.Crossref | GoogleScholarGoogle Scholar | 31773996PubMed |

Loh, R., Bergfeld, J., Hayes, D., O’hara, A., Pyecroft, S., Raidal, S., and Sharpe, R. (2006). The pathology of devil facial tumor disease (DFTD) in Tasmanian devils (Sarcophilus harrisii). Veterinary Pathology 43, 890–895.
The pathology of devil facial tumor disease (DFTD) in Tasmanian devils (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar | 17099145PubMed |

Metzger, M. J., Reinisch, C., Sherry, J., and Goff, S. P. (2015). Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161, 255–263.
Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams.Crossref | GoogleScholarGoogle Scholar | 25860608PubMed |

Ong, C. E. B., Patchett, A. L., Darby, J. M., Chen, J., Liu, G. S., Lyons, A. B., Woods, G. M., and Flies, A. S. (2021). NLRC5 regulates expression of MHC-I and provides a target for anti-tumor immunity in transmissible cancers. Journal of Cancer Research and Clinical Oncology 147, 1973–1991.
NLRC5 regulates expression of MHC-I and provides a target for anti-tumor immunity in transmissible cancers.Crossref | GoogleScholarGoogle Scholar |

Patchett, A., and Woods, G. (2019). Targeting transmissible cancers in animals. Science 365, 438–440.
Targeting transmissible cancers in animals.Crossref | GoogleScholarGoogle Scholar | 31371595PubMed |

Peck, S., Corkrey, R., Hamede, R., Jones, M., and Canfield, P. (2016). Hematologic and serum biochemical changes associated with Devil Facial Tumor Disease in Tasmanian Devils. Veterinary Clinical Pathology 45, 417–429.
| 27589840PubMed |

Pye, R., Hamede, R., Siddle, H. V., Caldwell, A., Knowles, G. W., Swift, K., Kreiss, A., Jones, M. E., Lyons, A. B., and Woods, G. M. (2016a). Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils. Biology Letters 12, 20160553.
Demonstration of immune responses against devil facial tumour disease in wild Tasmanian devils.Crossref | GoogleScholarGoogle Scholar | 28120799PubMed |

Pye, R. J., Pemberton, D., Tovar, C., Tubio, J. M., Dun, K. A., Fox, S., Darby, J., Hayes, D., Knowles, G. W., Kreiss, A., Siddle, H. V., Swift, K., Lyons, A. B., Murchison, E. P., and Woods, G. M. (2016b). A second transmissible cancer in Tasmanian devils. Proceedings of the National Academy of Sciences of the United States of America 113, 374–379.
A second transmissible cancer in Tasmanian devils.Crossref | GoogleScholarGoogle Scholar | 26711993PubMed |

Pye, R., Patchett, A., Mclennan, E., Thomson, R., Carver, S., Fox, S., Pemberton, D., Kreiss, A., Baz Morelli, A., Silva, A., Pearse, M. J., Corcoran, L. M., Belov, K., Hogg, C. J., Woods, G. M., and Lyons, A. B. (2018). Immunization strategies producing a humoral IgG Immune response against devil facial tumor disease in the majority of Tasmanian devils destined for wild release. Frontiers in Immunology 9, 259.
Immunization strategies producing a humoral IgG Immune response against devil facial tumor disease in the majority of Tasmanian devils destined for wild release.Crossref | GoogleScholarGoogle Scholar | 29515577PubMed |

Rocke, T. E., Tripp, D. W., Russell, R. E., Abbott, R. C., Richgels, K. L. D., Matchett, M. R., Biggins, D. E., Griebel, R., Schroeder, G., Grassel, S. M., Pipkin, D. R., Cordova, J., Kavalunas, A., Maxfield, B., Boulerice, J., and Miller, M. W. (2017). Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp.) in field trials. EcoHealth 14, 438–450.
Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp.) in field trials.Crossref | GoogleScholarGoogle Scholar | 28643091PubMed |

Rocke, T. E., Kingstad-Bakke, B., Wuthrich, M., Stading, B., Abbott, R. C., Isidoro-Ayza, M., Dobson, H. E., Dos Santos Dias, L., Galles, K., Lankton, J. S., Falendysz, E. A., Lorch, J. M., Fites, J. S., Lopera-Madrid, J., White, J. P., Klein, B., and Osorio, J. E. (2019). Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus). Scientific Reports 9, 6788.
Virally-vectored vaccine candidates against white-nose syndrome induce anti-fungal immune response in little brown bats (Myotis lucifugus).Crossref | GoogleScholarGoogle Scholar | 31043669PubMed |

Sharpe, A. H., and Pauken, K. E. (2018). The diverse functions of the PD1 inhibitory pathway. Nature Reviews. Immunology 18, 153–167.
The diverse functions of the PD1 inhibitory pathway.Crossref | GoogleScholarGoogle Scholar | 28990585PubMed |

Siddle, H. V., Kreiss, A., Tovar, C., Yuen, C. K., Cheng, Y., Belov, K., Swift, K., Pearse, A. M., Hamede, R., Jones, M. E., Skjodt, K., Woods, G. M., and Kaufman, J. (2013). Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer. Proceedings of the National Academy of Sciences of the United States of America 110, 5103–5108.
Reversible epigenetic down-regulation of MHC molecules by devil facial tumour disease illustrates immune escape by a contagious cancer.Crossref | GoogleScholarGoogle Scholar | 23479617PubMed |

Sillero-Zubiri, C., Marino, J., Gordon, C. H., Bedin, E., Hussein, A., Regassa, F., Banyard, A., and Fooks, A. R. (2016). Feasibility and efficacy of oral rabies vaccine SAG2 in endangered Ethiopian wolves. Vaccine 34, 4792–4798.
Feasibility and efficacy of oral rabies vaccine SAG2 in endangered Ethiopian wolves.Crossref | GoogleScholarGoogle Scholar | 27543453PubMed |

Stammnitz, M. R., Coorens, T. H. H., Gori, K. C., Hayes, D., Fu, B., Wang, J., Martin-Herranz, D. E., Alexandrov, L. B., Baez-Ortega, A., Barthorpe, S., Beck, A., Giordano, F., Knowles, G. W., Kwon, Y. M., Hall, G., Price, S., Pye, R. J., Tubio, J. M. C., Siddle, H. V. T., Sohal, S. S., Woods, G. M., Mcdermott, U., Yang, F., Garnett, M. J., Ning, Z., and Murchison, E. P. (2018). The origins and vulnerabilities of two transmissible cancers in Tasmanian devils. Cancer Cell 33, 607–619 e15.
The origins and vulnerabilities of two transmissible cancers in Tasmanian devils.Crossref | GoogleScholarGoogle Scholar | 29634948PubMed |

Tovar, C., Obendorf, D., Murchison, E. P., Papenfuss, A. T., Kreiss, A., and Woods, G. M. (2011). Tumor-specific diagnostic marker for transmissible facial tumors of Tasmanian devils: immunohistochemistry studies. Veterinary Pathology 48, 1195–1203.
Tumor-specific diagnostic marker for transmissible facial tumors of Tasmanian devils: immunohistochemistry studies.Crossref | GoogleScholarGoogle Scholar | 21383118PubMed |

Tovar, C., Pye, R. J., Kreiss, A., Cheng, Y., Brown, G. K., Darby, J., Malley, R. C., Siddle, H. V., Skjodt, K., Kaufman, J., Silva, A., Baz Morelli, A., Papenfuss, A. T., Corcoran, L. M., Murphy, J. M., Pearse, M. J., Belov, K., Lyons, A. B., and Woods, G. M. (2017). Regression of devil facial tumour disease following immunotherapy in immunised Tasmanian devils. Scientific Reports 7, 43827.
Regression of devil facial tumour disease following immunotherapy in immunised Tasmanian devils.Crossref | GoogleScholarGoogle Scholar | 28276463PubMed |

Viney, M., Lazarou, L., and Abolins, S. (2015). The laboratory mouse and wild immunology. Parasite Immunology 37, 267–273.
The laboratory mouse and wild immunology.Crossref | GoogleScholarGoogle Scholar | 25303494PubMed |

Waugh, C. A., and Timms, P. (2020). A proposed roadmap for the control of infections in wildlife using Chlamydia vaccine development in koalas Phascolarctos cinereus as a template. Wildlife Biology 2020, .
A proposed roadmap for the control of infections in wildlife using Chlamydia vaccine development in koalas Phascolarctos cinereus as a template.Crossref | GoogleScholarGoogle Scholar |

Westman, M. E., Malik, R., Hall, E., Sheehy, P. A., and Norris, J. M. (2015). Determining the feline immunodeficiency virus (FIV) status of FIV-vaccinated cats using point-of-care antibody kits. Comparative Immunology, Microbiology and Infectious Diseases 42, 43–52.
Determining the feline immunodeficiency virus (FIV) status of FIV-vaccinated cats using point-of-care antibody kits.Crossref | GoogleScholarGoogle Scholar | 26459979PubMed |

Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., Makrigiannakis, A., Gray, H., Schlienger, K., Liebman, M. N., Rubin, S. C., and Coukos, G. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. The New England Journal of Medicine 348, 203–213.
Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer.Crossref | GoogleScholarGoogle Scholar | 12529460PubMed |