Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Effects of environmental factors on the detection of subsurface green turtles in aerial drone surveys

Michael N. Odzer https://orcid.org/0000-0003-0402-7764 A , Annabelle M. L. Brooks https://orcid.org/0000-0002-5847-9419 B , Michael R. Heithaus https://orcid.org/0000-0002-3219-1003 C and Elizabeth R. Whitman https://orcid.org/0000-0002-0573-8202 C D
+ Author Affiliations
- Author Affiliations

A Dr Michael M. Krop Senior High School, 1410 NE 215th St, North Miami Beach, FL 33179, USA.

B Cape Eleuthera Institute, PO Box EL-26029, Rock Sound, Eleuthera, The Bahamas.

C Institute of Environment, Department of Biological Sciences, Florida International University, 3000 NE 151st St, North Miami, FL 33181, USA.

D Corresponding author. Email: ewhitman@fiu.edu

Wildlife Research 49(1) 79-88 https://doi.org/10.1071/WR20207
Submitted: 7 December 2020  Accepted: 25 October 2021   Published: 4 February 2022

Abstract

Context: Aerial video surveys from unpiloted aerial systems (UAS) have become popular in wildlife research because of increased accessibility to remote areas, reduction of anthropogenic disruption to habitats and wildlife, low operating costs, and improved researcher safety. In shallow marine systems, they can provide opportunities to rapidly survey species that cannot easily be surveyed using boat- or land-based techniques. However, detectability of subsurface animals in marine habitats may be affected by environmental factors.

Aims: We investigated the effects of water depth, seagrass cover, surface glare, and observer numbers and expertise on the probability of detecting subsurface green turtles in UAS video surveys.

Methods: We deployed inanimate green turtle decoys at randomised intervals along 24 pre-determined transects across a depth gradient in a seagrass-dominated bay off Great Abaco, The Bahamas. We collected aerial videos of the transects by flying a DJI Phantom 3 Advanced quadcopter drone at an altitude of 10 m over each transect. Three independent observers watched each video and recorded decoy sightings to compare detection probabilities across observer experience levels. We used a generalised linear model to test for the effects of glare, water depth, wind speed, and seagrass cover on the detectability of turtle decoys. We also recorded glare conditions with aerial videos taken at 2-h intervals over a still body of water on cloudless days off North Miami, FL.

Key results: Individual observers performed similarly, but adding one additional observer increased detection by 11–12% and adding a third observer increased detections by up to 15%. Depth, seagrass cover, and glare significantly affected decoy detections. In both summer and fall, the optimal times and directions to minimise glare in aerial video surveys were 0800 hours, facing any direction other than north, and 1800 hours, facing any direction other than south.

Conclusions: The number of human observers and environmental variables, especially depth, seagrass cover, and glare, are important to explicitly consider when designing and analysing data from UAS surveys of subsurface animal abundances and distribution.

Implications: Our study draws attention to potential limitations of UAS-acquired data for subsurface observations if environmental conditions are not explicitly accounted for. Quantifying the effects of environmental factors, designing surveys to minimise variance in these factors, and having multiple observers are crucial for optimising UAS use in research and conservation of sea turtles and other marine fauna.

Keywords: unpiloted aerial vehicle, unmanned aerial system, drone surveys, Chelonia mydas, The Bahamas, aerial survey.


References

Barr, J. R., Green, M. C., DeMaso, S. J., and Hardy, T. B. (2018). Detectability and visibility biases associated with using a consumer‐grade unmanned aircraft to survey nesting colonial waterbirds. Journal of Field Ornithology 89, 242–257.
Detectability and visibility biases associated with using a consumer‐grade unmanned aircraft to survey nesting colonial waterbirds.Crossref | GoogleScholarGoogle Scholar |

Benavides, M. T., Fodrie, F. J., and Johnston, D. W. (2019). Shark detection probability from aerial drone surveys within a temperate estuary. Journal of Unmanned Vehicle Systems 8, 44–56.
Shark detection probability from aerial drone surveys within a temperate estuary.Crossref | GoogleScholarGoogle Scholar |

Bevan, E., Whiting, S., Tucker, T., Guinea, M., Raith, A., and Douglas, R. (2018). Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds. PLoS One 13, e0194460.
Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds.Crossref | GoogleScholarGoogle Scholar | 29561901PubMed |

Bjorndal, K. A. (1980). Nutrition and grazing behavior of the green turtle Chelonia mydas. Marine Biology 56, 147–154.
Nutrition and grazing behavior of the green turtle Chelonia mydas.Crossref | GoogleScholarGoogle Scholar |

Bjorndal, K. A. (1997). Foraging ecology and nutrition of sea turtles. In ‘The biology of sea turtles. Vol 1’. (Eds P. L. Lutz and J. A. Musick.) pp. 199–231. (CRC Press: Boca Raton, FL, USA.)

Brack, I. V., Kindel, A., and Oliveira, L. F. B. (2018). Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: synthesis, solutions, and challenges. Methods in Ecology and Evolution 9, 1864–1873.
Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: synthesis, solutions, and challenges.Crossref | GoogleScholarGoogle Scholar |

Butcher, P. A., Colefax, A. P., Gorkin, R. A., Kajiura, S. M., López, N. A., Mourier, J., Purcell, C. R., Skomal, G. B., Tucker, J. P., Walsh, A. J., Williamson, J. E., and Raoult, V. (2021). The drone revolution of shark science: a review. Drones (Basel) 5, 8.
The drone revolution of shark science: a review.Crossref | GoogleScholarGoogle Scholar |

Chabot, D., and Bird, D. M. (2015). Wildlife research and management methods in the 21st century: where do unmanned aircraft fit in? Journal of Unmanned Vehicle Systems 3, 137–155.
Wildlife research and management methods in the 21st century: where do unmanned aircraft fit in?Crossref | GoogleScholarGoogle Scholar |

Colefax, A. P., Butcher, P. A., Pagendam, D. E., and Kelaher, B. P. (2019). Reliability of marine faunal detections in drone-based monitoring. Ocean and Coastal Management 174, 108–115.
Reliability of marine faunal detections in drone-based monitoring.Crossref | GoogleScholarGoogle Scholar |

Doherty, P. D., Baxter, J. M., Gell, F. R., Godley, B. J., Graham, R. T., Hall, G., Hall, J., Hawkes, L. A., Henderson, S. M., Johnson, L., and Speedie, C. (2017). Long-term satellite tracking reveals variable seasonal migration strategies of basking sharks in the north-east Atlantic. Scientific Reports 7, 42837.
Long-term satellite tracking reveals variable seasonal migration strategies of basking sharks in the north-east Atlantic.Crossref | GoogleScholarGoogle Scholar | 28216646PubMed |

Doukari, M., Batsaris, M., Papakonstantinou, A., and Topouzelis, K. (2019). A protocol for aerial survey in coastal areas using UAS. Remote Sensing 11, 1913.
A protocol for aerial survey in coastal areas using UAS.Crossref | GoogleScholarGoogle Scholar |

Duffy, J. P., Cunliffe, A. M., DeBell, L., Sandbrook, C., Wich, S. A., Shutler, J. D., Myers‐Smith, I. H., Varela, M. R., and Anderson, K. (2018). Location, location, location: considerations when using lightweight drones in challenging environments. Remote Sensing in Ecology and Conservation 4, 7–19.
Location, location, location: considerations when using lightweight drones in challenging environments.Crossref | GoogleScholarGoogle Scholar |

Dunstan, A., Robertson, K., Fitzpatrick, R., Pickford, J., and Meager, J. (2020). Use of unmanned aerial vehicles (UAVs) for mark-resight nesting population estimation of adult female green sea turtles at Raine Island. PLoS One 15, e0228524.
Use of unmanned aerial vehicles (UAVs) for mark-resight nesting population estimation of adult female green sea turtles at Raine Island.Crossref | GoogleScholarGoogle Scholar | 32497041PubMed |

Fuentes, M. M. P. B., Bell, I., Hagihara, R., Hamann, M., Hazel, J., Huth, A., Seminoff, J. A., Sobtzick, S., and Marsh, H. (2015). Improving in-water estimates of marine turtle abundance by adjusting aerial survey counts for perception and availability biases. Journal of Experimental Marine Biology and Ecology 471, 77–83.
Improving in-water estimates of marine turtle abundance by adjusting aerial survey counts for perception and availability biases.Crossref | GoogleScholarGoogle Scholar |

Hangar (2018). Autopilot. Available at https://autoflight.hangar.com/autopilot/flightschool

Hays, G. C., and Hawkes, L. A. (2018). Satellite tracking sea turtles: opportunities and challenges to address key questions. Frontiers in Marine Science 5, 432.
Satellite tracking sea turtles: opportunities and challenges to address key questions.Crossref | GoogleScholarGoogle Scholar |

Hays, G. C., Houghton, J. D., and Myers, A. E. (2004). Pan-Atlantic leatherback turtle movements. Nature 429, 522.
Pan-Atlantic leatherback turtle movements.Crossref | GoogleScholarGoogle Scholar | 15175742PubMed |

Hays, G. C., Ferreira, L. C., Sequeira, A. M., Meekan, M. G., Duarte, C. M., Bailey, H., Bailleul, F., Bowen, W. D., Caley, M. J., Costa, D. P., Eguíluz, V. M., Fossette, S., Friedlaender, A. S., Gales, N., Gleiss, A. C., Gunn, J., Harcourt, R., Hazen, E. L., Heithaus, M. R., Heupel, M., Holland, K., Horning, M., Jonsen, I., Kooyman, G. L., Lowe, C. G., Madsen, P. T., Marsh, H., Phillips, R. A., Righton, D., Ropert-Coudert, Y., Sato, K., Shaffer, S. A., Simpfendorfer, C. A., Sims, D. W., Skomal, G., Takahashi, A., Trathan, P. N., Wikelski, M., Womble, J. N., and Thums, M. (2016). Key questions in marine megafauna movement ecology. Trends in Ecology & Evolution 31, 463–475.
Key questions in marine megafauna movement ecology.Crossref | GoogleScholarGoogle Scholar |

Hays, G. C., Bailey, H., Bograd, S. J., Bowen, W. D., Campagna, C., Carmichael, R. H., Casale, P., Chiaradia, A., Costa, D. P., Cuevas, E., Nico de Bruyn, P. N., Dias, M. P., Duarte, C. M., Dunn, D. C., Dutton, P. H., Esteban, N., Friedlaender, A., Goetz, K. T., Godley, B. J., Halpin, P. N., Hamann, M., Hammerschlag, N., Harcourt, R., Harrison, A. L., Hazen, E. L., Heupel, M. R., Hoyt, E., Humphries, N. E., Kot, C. Y., Lea, J. S. E., Marsh, H., Maxwell, S. M., McMahon, C. R., Notarbartolo di Sciara, G., Palacios, D. M., Phillips, R. A., Righton, D., Schofield, G., Seminoff, J. A., Simpfendorfer, C. A., Sims, D. W., Takahashi, A., Tetley, M. J., Thums, M., Trathan, P. N., Villegas-Amtmann, S., Wells, R. S., Whiting, S. D., Wildermann, N. E., and Sequeira, A. M. M. (2019). Translating marine animal tracking data into conservation policy and management. Trends in Ecology & Evolution 34, 459–473.
Translating marine animal tracking data into conservation policy and management.Crossref | GoogleScholarGoogle Scholar |

Hodgson, A., Kelly, N., and Peel, D. (2013). Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study. PLoS One 8, e79556.
Unmanned aerial vehicles (UAVs) for surveying marine fauna: a dugong case study.Crossref | GoogleScholarGoogle Scholar | 24223967PubMed |

Howey-Jordan, L. A., Brooks, E. J., Abercrombie, D. L., Jordan, L. K., Brooks, A., Williams, S., Gospodarczyk, E., and Chapman, D. D. (2013). Complex movements, philopatry and expanded depth range of a severely threatened pelagic shark, the oceanic whitetip (Carcharhinus longimanus) in the western North Atlantic. PLoS One 8, e56588.
Complex movements, philopatry and expanded depth range of a severely threatened pelagic shark, the oceanic whitetip (Carcharhinus longimanus) in the western North Atlantic.Crossref | GoogleScholarGoogle Scholar | 23437180PubMed |

Hussey, N. E., Kessel, S. T., Aarestrup, K., Cooke, S. J., Cowley, P. D., Fisk, A. T., Harcourt, R. G., Holland, K. N., Iverson, S. J., Kocik, J. F., and Flemming, J. E. M. (2015). Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642.
Aquatic animal telemetry: a panoramic window into the underwater world.Crossref | GoogleScholarGoogle Scholar | 26068859PubMed |

Johnston, D. W. (2019). Unoccupied aircraft systems in marine science and conservation. Annual Review of Marine Science 11, 439–463.
Unoccupied aircraft systems in marine science and conservation.Crossref | GoogleScholarGoogle Scholar | 30020850PubMed |

Joyce, K. E., Duce, S., Leahy, S. M., Leon, J., and Maier, S. W. (2019). Principles and practice of acquiring drone-based image data in marine environments. Marine and Freshwater Research 70, 952–963.
Principles and practice of acquiring drone-based image data in marine environments.Crossref | GoogleScholarGoogle Scholar |

Katsanevakis, S., Weber, A., Pipitone, C., Leopold, M., Cronin, M., Scheidat, M., Doyle, T. K., Buhl-Mortensen, L., Buhl-Mortensen, P., Anna, G. D., and de Boois, I. (2012). Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquatic Biology 16, 31–52.
Monitoring marine populations and communities: methods dealing with imperfect detectability.Crossref | GoogleScholarGoogle Scholar |

Kilfoil, J. P., Rodriguez-Pinto, I., Kiszka, J. J., Heithaus, M. R., Zhang, Y., Roa, C. C., Ailloud, L. E., Campbell, M. D., and Wirsing, A. J. (2020). Using unmanned aerial vehicles and machine learning to improve sea cucumber density estimation in shallow habitats. ICES Journal of Marine Science 77, 2882–2889.
Using unmanned aerial vehicles and machine learning to improve sea cucumber density estimation in shallow habitats.Crossref | GoogleScholarGoogle Scholar |

Kiszka, J. J., and Heithaus, M. R. (2019). Using aerial surveys to investigate the distribution, abundance, and behavior of sharks and rays. In ‘Shark Research: Emerging technologies and applications for the field and laboratory’. (Eds J. C. Carrier, M. R. Heithaus, and C. A. Simpfendorfer.) pp. 71–82. (CRC Press: Boca Raton, FL, USA.)

Kiszka, J. J., Mourier, J., Gastrich, K., and Heithaus, M. R. (2016). Using unmanned aerial vehicles (UAVs) to investigate shark and ray densities in a shallow coral lagoon. Marine Ecology Progress Series 560, 237–242.
Using unmanned aerial vehicles (UAVs) to investigate shark and ray densities in a shallow coral lagoon.Crossref | GoogleScholarGoogle Scholar |

MacDonald, B. D., Madrak, S. V., Lewison, R. L., Seminoff, J. A., and Eguchi, T. (2013). Fine scale diel movement of the east Pacific green turtle, Chelonia mydas, in a highly urbanized foraging environment. Journal of Experimental Marine Biology and Ecology 443, 56–64.
Fine scale diel movement of the east Pacific green turtle, Chelonia mydas, in a highly urbanized foraging environment.Crossref | GoogleScholarGoogle Scholar |

Mazerolle, M. J. (2017). AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.3-1. Available at https://cran.r-project.org/package=AICcmodavg.

Mulero-Pázmány, M., Jenni-Eiermann, S., Strebel, N., Sattler, T., Negro, J. J., and Tablado, Z. (2017). Unmanned aircraft systems as a new source of disturbance for wildlife: a systematic review. PLoS One 12, e0178448.
Unmanned aircraft systems as a new source of disturbance for wildlife: a systematic review.Crossref | GoogleScholarGoogle Scholar | 28636611PubMed |

Petit, I.J., González, C.F., Gusmao, J.B., Álvarez-Varas, R., and Hinojosa, I.A. (2020). Resting dynamics and diel activity of the green turtle (Chelonia mydas) in Rapa Nui, Chile. Chelonian Conservation and Biology: Celebrating 25 years as the World’s Turtle and Tortoise Journal 19, 124–132.

Queiroz, N., Humphries, N. E., Couto, A., Vedor, M., Da Costa, I., Sequeira, A. M., Mucientes, G., Santos, A. M., Abascal, F. J., Abercrombie, D. L., and Abrantes, K. (2019). Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466.
Global spatial risk assessment of sharks under the footprint of fisheries.Crossref | GoogleScholarGoogle Scholar | 31340216PubMed |

Ramos, E. A., Maloney, B., Magnasco, M. O., and Reiss, D. (2018). Bottlenose dolphins and Antillean manatees respond to small multi-rotor unmanned aerial systems. Frontiers in Marine Science 5, 316.
Bottlenose dolphins and Antillean manatees respond to small multi-rotor unmanned aerial systems.Crossref | GoogleScholarGoogle Scholar |

Raoult, V., Tosetto, L., and Williamson, J. E. (2018). Drone-based high-resolution tracking of aquatic vertebrates. Drones (Basel) 2, 37.
Drone-based high-resolution tracking of aquatic vertebrates.Crossref | GoogleScholarGoogle Scholar |

Rees, A. F., Alfaro-Shigueto, J., Barata, P. C. R., Bjorndal, K. A., Bolten, A. B., Bourjea, J., Broderick, A. C., Campbell, L. M., Cardona, L., Carreras, C., Casale, P., Ceriani, S. A., Dutton, P. H., Eguchi, T., Formia, A., Fuentes, M. M. P. B., Fuller, W. J., Girondot, M., Godfrey, M. H., Hamann, M., Hart, K. M., Hays, G. C., Hochscheid, S., Kaska, Y., Jensen, M. P., Mangel, J. C., Mortimer, J. A., Naro-Maciel, E., Ng, C. K. Y., Nichols, W. J., Phillott, A. D., Reina, R. D., Revuelta, O., Schofield, G., Seminoff, J. A., Shanker, K., Tomás, J., van de Merwe, J. P., Van Houtan, K. S., Vander Zanden, H. B., Wallace, B. P., Wedemeyer-Strombel, K. R., Work, T. M., and Godley, B. J. (2016). Are we working towards global research priorities for management and conservation of sea turtles? Endangered Species Research 31, 337–382.
Are we working towards global research priorities for management and conservation of sea turtles?Crossref | GoogleScholarGoogle Scholar |

Rees, A. F., Avens, L., Ballorain, K., Bevan, E., Broderick, A. C., Carthy, R. R., Christianen, M. J., Duclos, G., Heithaus, M. R., Johnston, D. W., Mangel, J. C., Paladino, F., Pendoley, K., Reina, R. D., Robinson, N. J., Ryan, R., Sykora-Bodie, S. T., Tilley, D., Varela, M. R., Whitman, E. R., Whittock, P., Wibbels, T., and Godley, B. (2018). The potential of unmanned aerial systems for sea turtle research and conservation: a review and future directions. Endangered Species Research 35, 81–100.
The potential of unmanned aerial systems for sea turtle research and conservation: a review and future directions.Crossref | GoogleScholarGoogle Scholar |

Rieucau, G., Kiszka, J. J., Castillo, J. C., Mourier, J., Boswell, K. M., and Heithaus, M. R. (2018). Using unmanned aerial vehicle (UAV) surveys and image analysis in the study of large surface‐associated marine species: a case study on reef sharks Carcharhinus melanopterus shoaling behaviour. Journal of Fish Biology 93, 119–127.
Using unmanned aerial vehicle (UAV) surveys and image analysis in the study of large surface‐associated marine species: a case study on reef sharks Carcharhinus melanopterus shoaling behaviour.Crossref | GoogleScholarGoogle Scholar | 29855056PubMed |

Robinson, N. J., Bigelow, W. F., Cuffley, J., Gary, M., Hoefer, S., Mills, S., Smith, A., and Blanco, A. M. (2020). Validating the use of drones for monitoring the abundance and behaviour of juvenile green sea turtles in mangrove creeks in The Bahamas. Testudo 9, 24–35.

Rowat, D., Gore, M., Meekan, M. G., Lawler, I. R., and Bradshaw, C. J. (2009). Aerial survey as a tool to estimate whale shark abundance trends. Journal of Experimental Marine Biology and Ecology 368, 1–8.
Aerial survey as a tool to estimate whale shark abundance trends.Crossref | GoogleScholarGoogle Scholar |

Schofield, G., Katselidis, K. A., Lilley, M. K., Reina, R. D., and Hays, G. C. (2017). Detecting elusive aspects of wildlife ecology using drones: new insights on the mating dynamics and operational sex ratios of sea turtles. Functional Ecology 31, 2310–2319.
Detecting elusive aspects of wildlife ecology using drones: new insights on the mating dynamics and operational sex ratios of sea turtles.Crossref | GoogleScholarGoogle Scholar |

Schofield, G., Esteban, N., Katselidis, K. A., and Hays, G. C. (2019). Drones for research on sea turtles and other marine vertebrates. A review. Biological Conservation 238, 108214.
Drones for research on sea turtles and other marine vertebrates. A review.Crossref | GoogleScholarGoogle Scholar |

Sykora-Bodie, S. T., Bezy, V., Johnston, D. W., Newton, E., and Lohmann, K. J. (2017). Quantifying nearshore sea turtle densities: applications of unmanned aerial systems for population assessments. Scientific Reports 7, 17690.
Quantifying nearshore sea turtle densities: applications of unmanned aerial systems for population assessments.Crossref | GoogleScholarGoogle Scholar | 29255157PubMed |

Thomson, J. A., Cooper, A. B., Burkholder, D. A., Heithaus, M. R., and Dill, L. M. (2012). Heterogeneous patterns of availability for detection during visual surveys: spatiotemporal variation in sea turtle dive-surfacing behaviour on a feeding ground. Methods in Ecology and Evolution 3, 378–387.
Heterogeneous patterns of availability for detection during visual surveys: spatiotemporal variation in sea turtle dive-surfacing behaviour on a feeding ground.Crossref | GoogleScholarGoogle Scholar |

Thomson, J. A., Cooper, A. B., Burkholder, D. A., Heithaus, M. R., and Dill, L. M. (2013). Correcting for heterogeneous availability bias in surveys of long-diving marine turtles. Biological Conservation 165, 154–161.
Correcting for heterogeneous availability bias in surveys of long-diving marine turtles.Crossref | GoogleScholarGoogle Scholar |

Whitman, E. R. (2018). Factors Affecting Green Turtle Foraging Ecology Across Multiple Spatial Scales. FIU Electronic Theses and Dissertations. Available at https://digitalcommons.fiu.edu/etd/3870.

Wood, S. A., Robinson, P. W., Costa, D. P., and Beltran, R. S. (2021). Accuracy and precision of citizen scientist animal counts from drone imagery. PLoS One 16, e0244040.
Accuracy and precision of citizen scientist animal counts from drone imagery.Crossref | GoogleScholarGoogle Scholar | 33617554PubMed |