Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Small mammal diversity is higher in infrequently compared with frequently burnt rainforest–savanna mosaics in the north Kimberley, Australia

Stefania Ondei https://orcid.org/0000-0002-2515-3316 A F , Lynda D. Prior A , Hugh W. McGregor https://orcid.org/0000-0003-3255-9282 A , Angela M. Reid B , Chris N. Johnson A C , Tom Vigilante D E , Catherine Goonack C , Desmond Williams C and David M. J. S. Bowman A
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences, University of Tasmania, Sandy Bay, Tas. 7005, Australia.

B Parna Ngururrpa Aboriginal Corporation and Desert Support Services, Perth, WA 6004, Australia.

C ARC Centre of Excellence for Australian Biodiversity and Heritage, Sandy Bay, Tas. 7005, Australia.

D Wunambal Gaambera Aboriginal Corporation, Kalumburu, WA 6740, Australia.

E Bush Heritage Australia, Melbourne, Vic. 3000, Australia.

F Corresponding author. Email: stefania.ondei@utas.edu.au

Wildlife Research 48(3) 218-229 https://doi.org/10.1071/WR20010
Submitted: 17 January 2020  Accepted: 16 August 2020   Published: 27 November 2020

Abstract

Context: Populations of native mammals are declining at an alarming rate in many parts of tropical northern Australia. Fire regimes are considered a contributing factor, but this hypothesis is difficult to test because of the ubiquity of fire.

Aims: This preliminary study investigated relative abundance and richness of small mammals on a gradient of fire regimes in the Uunguu Indigenous Protected Area (north Kimberley, Australia).

Methods: Species were sampled using 40 unbaited camera traps, positioned for a year on 20 transects crossing the rainforest–savanna boundary at locations with comparable environment and geology but varying fire history. The relative importance of the factors ‘fire frequency’, ‘late dry season fire frequency’, ‘time since burnt’ and ‘vegetation type’ as predictors of the number of small mammal species and detections was tested using Spatial Generalised Linear Mixed Models to account for spatial autocorrelation.

Key results: Nine species of small mammals were observed. Mammals were more abundant and diverse in locations with low overall fire frequency, which was a better predictor than late dry season fire frequency or time since burnt. The model including fire frequency and vegetation explained the highest proportion of total variation in mammal diversity (R2 = 42.0%), with most of this variation explained by fire frequency alone (R2 = 40.5%). The best model for number of detections (R2 = 20.9%) included both factors.

Conclusions: In the north Kimberley, small mammals are likely to be more abundant and diverse in areas with low fire frequency.

Implications: This natural experiment supports the theory that frequent fires are contributing to the decline of small mammals observed across northern Australia.

Keywords: Australian tropics, fire regimes, mammals, rainforests, savannas.


References

Andersen, A. N., Cook, G. D., Corbett, L. K., Douglas, M. M., Eager, R. W., Russell-Smith, J., Setterfield, S. A., Williams, R. J., and Woinarski, J. C. Z. (2005). Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment. Austral Ecology 30, 155–167.
Fire frequency and biodiversity conservation in Australian tropical savannas: implications from the Kapalga fire experiment.Crossref | GoogleScholarGoogle Scholar |

Andersen, A. N., Woinarski, J. C. Z., and Parr, C. L. (2012). Savanna burning for biodiversity: fire management for faunal conservation in Australian tropical savannas. Austral Ecology 37, 658–667.
Savanna burning for biodiversity: fire management for faunal conservation in Australian tropical savannas.Crossref | GoogleScholarGoogle Scholar |

Australian Government – Department of Environment, Water, Heritage and the Arts (2009). EPBC ACT List of Threatened Species. (Australian Government: Canberra, ACT, Australia.) Available at https://www.environment.gov.au/cgi-bin/sprat/public/publicthreatenedlist.pl [verified 8 September 2020].

Barley, S. C., and Meeuwig, J. J. (2017). The power and the pitfalls of large-scale, unreplicated natural experiments. Ecosystems 20, 331–339.
The power and the pitfalls of large-scale, unreplicated natural experiments.Crossref | GoogleScholarGoogle Scholar |

Beard, J. S. (Ed.) (1979). ‘Vegetation Survey of Western Australia: Kimberley 1:1 000 000 Vegetation Series Sheet 1.’ (University of Western Australia Press: Perth, WA, Australia.)

Bowman, D. M. J. S. (2000). ‘Australian Rainforests: Islands of Green in a Land of Fire.’ (Cambridge University Press: Cambridge, UK.)

Bowman, D. M. J. S. (2020). Using a natural experiment to foresee the fate of boreal carbon stores. Global Change Biology 26, 6028–6031.
Using a natural experiment to foresee the fate of boreal carbon stores.Crossref | GoogleScholarGoogle Scholar |

Bowman, D. M. J. S., and Panton, W. J. (1995). Munmarlary revisited: response of a north Australian Eucalyptus tetrodonta savanna protected from fire for 20 years. Australian Journal of Ecology 20, 526–531.
Munmarlary revisited: response of a north Australian Eucalyptus tetrodonta savanna protected from fire for 20 years.Crossref | GoogleScholarGoogle Scholar |

Bowman, D. M. J. S., and Woinarski, J. C. Z. (1994). Biogeography of Australian monsoon rainforest mammals: implications for the conservation of rainforest mammals. Pacific Conservation Biology 1, 98–106.
Biogeography of Australian monsoon rainforest mammals: implications for the conservation of rainforest mammals.Crossref | GoogleScholarGoogle Scholar |

Bowman, D. M. J. S., Walsh, A., and Prior, L. D. (2004). Landscape analysis of Aboriginal fire management in Central Arnhem Land, north Australia. Journal of Biogeography 31, 207–223.
Landscape analysis of Aboriginal fire management in Central Arnhem Land, north Australia.Crossref | GoogleScholarGoogle Scholar |

Bowman, D. M., Brown, G., Braby, M., Brown, J., Cook, L. G., Crisp, M., Ford, F., Haberle, S., Hughes, J., and Isagi, Y. (2010). Biogeography of the Australian monsoon tropics. Journal of Biogeography 37, 201–216.
Biogeography of the Australian monsoon tropics.Crossref | GoogleScholarGoogle Scholar |

Bradley, A., Kemper, C., Kitchener, D., Humphreys, W., and How, R. (1987). Small mammals of the Mitchell Plateau Region, Kimberley, Western-Australia. Wildlife Research 14, 397–413.
Small mammals of the Mitchell Plateau Region, Kimberley, Western-Australia.Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology (2016). Climate data online. Available at http://www.bom.gov.au/climate/data/ [verified 13 June 2016].

Croft, P., Hunter, J. T., and Reid, N. (2016). Forgotten fauna: habitat attributes of long-unburnt open forests and woodlands dictate a rethink of fire management theory and practice. Forest Ecology and Management 366, 166–174.
Forgotten fauna: habitat attributes of long-unburnt open forests and woodlands dictate a rethink of fire management theory and practice.Crossref | GoogleScholarGoogle Scholar |

Davies, G. M., and Gray, A. (2015). Don’t let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring). Ecology and Evolution 5, 5295–5304.
Don’t let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring).Crossref | GoogleScholarGoogle Scholar | 30151132PubMed |

Davies, H. F., McCarthy, M. A., Firth, R. S. C., Woinarski, J. C. Z., Gillespie, G. R., Andersen, A. N., Rioli, W., Puruntatameri, J., Roberts, W., Kerinaiua, C., Kerinauia, V., Womatakimi, K. B., and Murphy, B. P. (2018a). Declining populations in one of the last refuges for threatened mammal species in northern Australia. Austral Ecology 43, 602–612.
Declining populations in one of the last refuges for threatened mammal species in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Davies, H. F., McCarthy, M. A., Rioli, W., Puruntatameri, J., Roberts, W., Kerinaiua, C., Kerinauia, V., Womatakimi, K. B., Andersen, A. N., and Murphy, B. P. (2018b). An experimental test of whether pyrodiversity promotes mammal diversity in a northern Australian savanna. Journal of Applied Ecology 55, 2124–2134.
An experimental test of whether pyrodiversity promotes mammal diversity in a northern Australian savanna.Crossref | GoogleScholarGoogle Scholar |

Dormann, C. F., McPherson, J. M., Araújo, M. B., Bivand, R., Bolliger, J., Carl, G., Davies, R. G., Hirzel, A., Jetz, W., Daniel Kissling, W., Kühn, I., Ohlemüller, R., Peres-Neto, P. R., Reineking, B., Schröder, B., Schurr, F. M., and Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628.
Methods to account for spatial autocorrelation in the analysis of species distributional data: a review.Crossref | GoogleScholarGoogle Scholar |

Fick, S. E., and Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315.
WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |

Fisher, D. O., Johnson, C. N., Lawes, M. J., Fritz, S. A., McCallum, H., Blomberg, S. P., VanDerWal, J., Abbott, B., Frank, A., Legge, S., Letnic, M., Thomas, C. R., Fisher, A., Gordon, I. J., and Kutt, A. (2014). The current decline of tropical marsupials in Australia: is history repeating? Global Ecology and Biogeography 23, 181–190.
The current decline of tropical marsupials in Australia: is history repeating?Crossref | GoogleScholarGoogle Scholar |

Fitzsimons, J., Russell-Smith, J., James, G., Vigilante, T., Lipsett-Moore, G., Morrison, J., and Looker, M. (2012). Insights into the biodiversity and social benchmarking components of the northern Australian fire management and carbon abatement programmes. Ecological Management & Restoration 13, 51–57.
Insights into the biodiversity and social benchmarking components of the northern Australian fire management and carbon abatement programmes.Crossref | GoogleScholarGoogle Scholar |

Forsyth, D., Robley, A., and Reddiex, B. (2005). ‘Review of Methods used to Estimate the Abundance of Feral Cats.’ (Arthur Rylah Institute for Environmental Research, Department of Sustainability and Environment: Melbourne, Vic., Australia.)

Frank, A. S. K., Johnson, C. N., Potts, J. M., Fisher, A., Lawes, M. J., Woinarski, J. C. Z., Tuft, K., Radford, I. J., Gordon, I. J., and Collis, M. (2014). Experimental evidence that feral cats cause local extirpation of small mammals in Australia’s tropical savannas. Journal of Applied Ecology 51, 1486–1493.
Experimental evidence that feral cats cause local extirpation of small mammals in Australia’s tropical savannas.Crossref | GoogleScholarGoogle Scholar |

Friend, G. (1985). Ecological studies of a population of Antechinus bellus (Marsupialia: Dasyuridae) in tropical northern Australia. Wildlife Research 12, 151–162.
Ecological studies of a population of Antechinus bellus (Marsupialia: Dasyuridae) in tropical northern Australia.Crossref | GoogleScholarGoogle Scholar |

Friend, G. (1987). Population ecology of Mesembriomys-gouldii (Rodentia, Muridae) in the Wet-Dry Tropics of the Northern Territory. Wildlife Research 14, 293–303.
Population ecology of Mesembriomys-gouldii (Rodentia, Muridae) in the Wet-Dry Tropics of the Northern Territory.Crossref | GoogleScholarGoogle Scholar |

Friend, G. R., and Taylor, J. A. (1985). Habitat preferences of small mammals in tropical open-forest of the Northern Territory. Australian Journal of Ecology 10, 173–185.
Habitat preferences of small mammals in tropical open-forest of the Northern Territory.Crossref | GoogleScholarGoogle Scholar |

Friend, G. R., Morris, K. D., and McKenzie, N. L. (1991). The mammal fauna of Kimberley rainforests. In ‘Kimberley Rainforests of Australia’. (Eds N. L. McKenzie, C. N. Johnson and P. G. Kendrick.) pp. 393–412. (Surrey Beatty and Sons: Sydney, NSW, Australia.)

Gibson, L., and McKenzie, N. (2012). Occurrence of non-volant mammals on islands along the Kimberley coast of Western Australia. Records of the Western Australian Museum 81, 15–39.
Occurrence of non-volant mammals on islands along the Kimberley coast of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Hargrove, W. W., and Pickering, J. (1992). Pseudoreplication: a sine qua non for regional ecology. Landscape Ecology 6, 251–258.
Pseudoreplication: a sine qua non for regional ecology.Crossref | GoogleScholarGoogle Scholar |

Hohnen, R., Tuft, K. D., Legge, S., Radford, I. J., Carver, S., and Johnson, C. N. (2015). Post-fire habitat use of the golden-backed tree-rat (Mesembriomys macrurus) in the northwest Kimberley, Western Australia. Austral Ecology 40, 941–952.
Post-fire habitat use of the golden-backed tree-rat (Mesembriomys macrurus) in the northwest Kimberley, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs 54, 187–211.
Pseudoreplication and the design of ecological field experiments.Crossref | GoogleScholarGoogle Scholar |

Ibbett, M., Woinarski, J. C. Z., and Oakwood, M. (2018). Declines in the mammal assemblage of a rugged sandstone environment in Kakadu National Park, Northern Territory, Australia. Australian Mammalogy 40, 181–187.
Declines in the mammal assemblage of a rugged sandstone environment in Kakadu National Park, Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |

IUCN (2020). The IUCN Red List of Threatened Species. Version 2020-2. Available at https://www.iucnredlist.org/ [verified 8 September 2020].

Johnson, C. N. (2006). ‘Australia’s Mammal Extinctions: a 50,000-year History.’ (Cambridge University Press: Cambridge, UK.)

Johnson, C. N., and Isaac, J. L. (2009). Body mass and extinction risk in Australian marsupials: the ‘Critical Weight Range’ revisited. Austral Ecology 34, 35–40.
Body mass and extinction risk in Australian marsupials: the ‘Critical Weight Range’ revisited.Crossref | GoogleScholarGoogle Scholar |

Johnson, C. N., Isaac, J. L., and Fisher, D. O. (2007). Rarity of a top predator triggers continent-wide collapse of mammal prey: dingoes and marsupials in Australia. Proceedings of the Royal Society of London. Series B, Biological Sciences 274, 341–346.
Rarity of a top predator triggers continent-wide collapse of mammal prey: dingoes and marsupials in Australia.Crossref | GoogleScholarGoogle Scholar |

Johnstone, R., and Burbidge, A. (1991). The avifauna of Kimberley rainforests. In ‘Kimberley Rainforests of Australia’. (Eds N. L. McKenzie, R. B. Johnston and P. G. Kendrick.) pp. 361–391. (Surrey Beatty and Sons: Sydney, NSW, Australia.)

Kerle, J. (1985). Habitat preference and diet of the northern brushtail possum Trichosurus arnhemensis in the Alligator Rivers Region. In ‘NT Proceedings of the Ecological Society of Australia, Vol. 13’. pp. 161–176.

Kerle, J., and Burgman, M. (1984). Some aspects of the ecology of the mammal fauna of the Jabiluka Area, Northern Territory. Wildlife Research 11, 207–222.
Some aspects of the ecology of the mammal fauna of the Jabiluka Area, Northern Territory.Crossref | GoogleScholarGoogle Scholar |

Kitchener, D., Keller, L. E., Chapman, A., McKenzie, N. L., Start, A. N., and Kenneally, K. F. (1981). Observations on mammals on the Mitchell Plateau area, Kimberley, Western Australia. In ‘Biological Survey of Mitchell Plateau and Admiralty Gulf, Kimberley, Western Australia’. (Ed. anon.) pp. 123–169. (Western Australian Museum: Perth, WA, Australia.)

Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27.
Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.Crossref | GoogleScholarGoogle Scholar |

Lawes, M. J., Murphy, B. P., Fisher, A., Woinarski, J. C. Z., Edwards, A. C., and Russell-Smith, J. (2015). Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park. International Journal of Wildland Fire 24, 712–722.
Small mammals decline with increasing fire extent in northern Australia: evidence from long-term monitoring in Kakadu National Park.Crossref | GoogleScholarGoogle Scholar |

Leahy, L., Legge, S. M., Tuft, K., McGregor, H. W., Barmuta, L. A., Jones, M. E., and Johnson, C. N. (2015). Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildlife Research 42, 705–716.
Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas.Crossref | GoogleScholarGoogle Scholar |

Legge, S., Murphy, S., Heathcote, J., Flaxman, E., Augusteyn, J., and Crossman, M. (2008). The short-term effects of an extensive and high-intensity fire on vertebrates in the tropical savannas of the central Kimberley, northern Australia. Wildlife Research 35, 33–43.
The short-term effects of an extensive and high-intensity fire on vertebrates in the tropical savannas of the central Kimberley, northern Australia.Crossref | GoogleScholarGoogle Scholar |

Legge, S., Kennedy, M. S., Lloyd, R., Murphy, S. A., and Fisher, A. (2011). Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following the removal of introduced herbivores. Austral Ecology 36, 791–799.
Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following the removal of introduced herbivores.Crossref | GoogleScholarGoogle Scholar |

Legge, S., Murphy, B. P., McGregor, H., Woinarski, J. C. Z., Augusteyn, J., Ballard, G., Baseler, M., Buckmaster, T., Dickman, C. R., and Doherty, T. (2017). Enumerating a continental-scale threat: how many feral cats are in Australia? Biological Conservation 206, 293–303.
Enumerating a continental-scale threat: how many feral cats are in Australia?Crossref | GoogleScholarGoogle Scholar |

McGregor, H. W., Legge, S., Jones, M. E., and Johnson, C. N. (2014). Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats. PLoS One 9, e109097.
Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.Crossref | GoogleScholarGoogle Scholar | 25329902PubMed |

McGregor, H., Legge, S., Jones, M. E., and Johnson, C. N. (2015a). Feral cats are better killers in open habitats, revealed by animal-borne video. PLoS One 10, e0133915.
Feral cats are better killers in open habitats, revealed by animal-borne video.Crossref | GoogleScholarGoogle Scholar | 26288224PubMed |

McGregor, H. W., Legge, S., Potts, J., Jones, M. E., and Johnson, C. N. (2015b). Density and home range of feral cats in north-western Australia. Wildlife Research 42, 223–231.
Density and home range of feral cats in north-western Australia.Crossref | GoogleScholarGoogle Scholar |

McGregor, H. W., Legge, S., Jones, M. E., and Johnson, C. N. (2016). Extraterritorial hunting expeditions to intense fire scars by feral cats. Scientific Reports 6, 22559.
Extraterritorial hunting expeditions to intense fire scars by feral cats.Crossref | GoogleScholarGoogle Scholar | 26932268PubMed |

McKenzie, N. L., and Belbin, L. (1991). Kimberley rainforest communities: reserve recommendations and management considerations. In ‘Kimberley Rainforests of Australia’. (Eds N. L. McKenzie, R. B. Johnston and P. G. Kendrick) pp. 453–468. (Surrey Beatty and Sons: Sydney, NSW, Australia.)

McKenzie, N. L., Burbidge, A. A., Baynes, A., Brereton, R. N., Dickman, C. R., Gordon, G., Gibson, L. A., Menkhorst, P. W., Robinson, A. C., Williams, M. R., and Woinarski, J. C. Z. (2007). Analysis of factors implicated in the recent decline of Australia’s mammal fauna. Journal of Biogeography 34, 597–611.
Analysis of factors implicated in the recent decline of Australia’s mammal fauna.Crossref | GoogleScholarGoogle Scholar |

Menkhorst, K., and Woinarski, J. (1992). Distribution of mammals in monsoon rainforests of the Northern Territory. Wildlife Research 19, 295–315.
Distribution of mammals in monsoon rainforests of the Northern Territory.Crossref | GoogleScholarGoogle Scholar |

NAFI (2016). North Australia & Rangelands Fire Information. Available at https://firenorth.org.au/nafi3/ [verified 12 December 2019].

NASA JPL (2013). NASA Shuttle Radar Topography Mission Global 1 arc second [Data set]. NASA EOSDIS Land Processes DAAC. Available at https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003 [verified 17 July 2017].

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., and O’Hara, R. B. (2019). vegan: Community Ecology Package. Available at https://cran.r-project.org [verified 9 May 2020].

Olds, L. G. M., Myers, C., Cook, H., Schembri, B., Jackson, C., Evans, N., Charles, B., Waina, R., Breed, W. G., and Taggart, D. A. (2017). The occurrence and relative abundance of small terrestrial mammals on Theda Station in the Northern Kimberley, Western Australia. Australian Mammalogy 39, 78–91.
The occurrence and relative abundance of small terrestrial mammals on Theda Station in the Northern Kimberley, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Ondei, S., Prior, L. D., Vigilante, T., and Bowman, D. M. J. S. (2017a). Fire and cattle disturbance affects vegetation structure and rain forest expansion into savanna in the Australian monsoon tropics. Journal of Biogeography 44, 2331–2342.
Fire and cattle disturbance affects vegetation structure and rain forest expansion into savanna in the Australian monsoon tropics.Crossref | GoogleScholarGoogle Scholar |

Ondei, S., Prior, L. D., Williamson, G. J., Vigilante, T., and Bowman, D. M. (2017b). Water, land, fire, and forest: multi‐scale determinants of rainforests in the Australian monsoon tropics. Ecology and Evolution 7, 1592–1604.
Water, land, fire, and forest: multi‐scale determinants of rainforests in the Australian monsoon tropics.Crossref | GoogleScholarGoogle Scholar | 28261468PubMed |

Paltridge, R. (2002). The diets of cats, foxes and dingoes in relation to prey availability in the Tanami Desert, Northern Territory. Wildlife Research 29, 389–403.
The diets of cats, foxes and dingoes in relation to prey availability in the Tanami Desert, Northern Territory.Crossref | GoogleScholarGoogle Scholar |

Pardon, L. G., Brook, B. W., Griffiths, A. D., and Braithwaite, R. W. (2003). Determinants of survival for the northern brown bandicoot under a landscape-scale fire experiment. Journal of Animal Ecology 72, 106–115.
Determinants of survival for the northern brown bandicoot under a landscape-scale fire experiment.Crossref | GoogleScholarGoogle Scholar |

Parr, C. L., and Andersen, A. N. (2006). Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conservation Biology 20, 1610–1619.
Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm.Crossref | GoogleScholarGoogle Scholar | 17181796PubMed |

R Core Team (2020). ‘R: A Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria.)

Radford, I. J., Dickman, C. R., Start, A. N., Palmer, C., Carnes, K., Everitt, C., Fairman, R., Graham, G., Partridge, T., and Thomson, A. (2014). Mammals of Australia’s tropical savannas: a conceptual model of assemblage structure and regulatory factors in the Kimberley region. PLoS One 9, e92341.
Mammals of Australia’s tropical savannas: a conceptual model of assemblage structure and regulatory factors in the Kimberley region.Crossref | GoogleScholarGoogle Scholar | 24670997PubMed |

Radford, I. J., Gibson, L. A., Corey, B., Carnes, K., and Fairman, R. (2015). Influence of fire mosaics, habitat characteristics and cattle disturbance on mammals in fire-prone savanna landscapes of the northern Kimberley. PLoS One 10, e0130721.
Influence of fire mosaics, habitat characteristics and cattle disturbance on mammals in fire-prone savanna landscapes of the northern Kimberley.Crossref | GoogleScholarGoogle Scholar | 26121581PubMed |

Radford, I. J., Woolley, L.-A., Corey, B., Vigilante, T., Hatherley, E., Fairman, R., Carnes, K., Start, A. N., and Wunambal Gaambera Aboriginal, C. (2020). Prescribed burning benefits threatened mammals in northern Australia. Biodiversity and Conservation 29, 2985–3007.
Prescribed burning benefits threatened mammals in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Reid, A. M., Murphy, B. P., Vigilante, T., Corporation, W. G. A., and Bowman, D. M. J. S. (2020). Distribution and abundance of large herbivores in a northern Australian tropical savanna: a multi-scale approach. Austral Ecology , .
Distribution and abundance of large herbivores in a northern Australian tropical savanna: a multi-scale approach.Crossref | GoogleScholarGoogle Scholar |

Riley, S. J., DeGloria, S. D., and Elliot, R. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5, 23–27.

Russell-Smith, J. (1991). Classification, species richness, and environmental relations of monsoon rain forest in northern Australia. Journal of Vegetation Science 2, 259–278.
Classification, species richness, and environmental relations of monsoon rain forest in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Russell-Smith, J., and Whitehead, P. J. (2015). Reimagining fire management in fire-prone northern Australia. In ‘Carbon Accounting and Savanna Fire Management’. (Eds B. Murphy, A. Edwards, C. P. M. Meyer, and J. Russell-Smith.) pp. 1–22. (CSIRO Publishing: Melbourne, Vic., Australia.)

Russell-Smith, J., Monagle, C., Jacobsohn, M., Beatty, R. L., Bilbao, B., Millán, A., Vessuri, H., and Sánchez-Rose, I. (2017). Can savanna burning projects deliver measurable greenhouse emissions reductions and sustainable livelihood opportunities in fire-prone settings? Climatic Change 140, 47–61.
Can savanna burning projects deliver measurable greenhouse emissions reductions and sustainable livelihood opportunities in fire-prone settings?Crossref | GoogleScholarGoogle Scholar |

Short, J., and Smith, A. (1994). Mammal decline and recovery in Australia. Journal of Mammalogy 75, 288–297.
Mammal decline and recovery in Australia.Crossref | GoogleScholarGoogle Scholar |

Start, A. N., Burbidge, A. A., McKenzie, N. L., and Palmer, C. (2007). The status of mammals in the North Kimberley, Western Australia. Australian Mammalogy 29, 1–16.
The status of mammals in the North Kimberley, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Stobo-Wilson, A. M., Stokeld, D., Einoder, L. D., Davies, H. F., Fisher, A., Hill, B. M., Mahney, T., Murphy, B. P., Scroggie, M. P., Stevens, A., Woinarski, J. C. Z., Bawinanga, R., Warddeken, R., and Gillespie, G. R. (2020a). Bottom-up and top-down processes influence contemporary patterns of mammal species richness in Australia’s monsoonal tropics. Biological Conservation 247, 108638.
Bottom-up and top-down processes influence contemporary patterns of mammal species richness in Australia’s monsoonal tropics.Crossref | GoogleScholarGoogle Scholar |

Stobo-Wilson, A. M., Stokeld, D., Einoder, L. D., Davies, H. F., Fisher, A., Hill, B. M., Mahney, T., Murphy, B. P., Stevens, A., Woinarski, J. C. Z., Rangers, B., Rangers, W., and Gillespie, G. R. (2020b). Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia. Diversity & Distributions 26, 832–842.
Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia.Crossref | GoogleScholarGoogle Scholar |

Telfer, W. R., and Griffiths, A. D. (2006). Dry-season use of space, habitats and shelters by the short-eared rock-wallaby (Petrogale brachyotis) in the monsoon tropics. Wildlife Research 33, 207–214.
Dry-season use of space, habitats and shelters by the short-eared rock-wallaby (Petrogale brachyotis) in the monsoon tropics.Crossref | GoogleScholarGoogle Scholar |

Thomas, M. L., Baker, L., Beattie, J. R., and Baker, A. M. (2020). Determining the efficacy of camera traps, live capture traps, and detection dogs for locating cryptic small mammal species. Ecology and Evolution 10, 1054–1068.
Determining the efficacy of camera traps, live capture traps, and detection dogs for locating cryptic small mammal species.Crossref | GoogleScholarGoogle Scholar | 32015864PubMed |

Turpin, J. (2015). North Kimberley mammals – on the fringe of the high-rainfall zone. Australian Mammalogy 37, 132–145.
North Kimberley mammals – on the fringe of the high-rainfall zone.Crossref | GoogleScholarGoogle Scholar |

Venables, W., and Ripley, B. (2002). ‘Modern Applied Statistics.’ (Springer: New York, NY, USA.)

Vigilante, T. (2001). Analysis of explorers’ records of Aboriginal landscape burning in the Kimberley region of Western Australia. Australian Geographical Studies 39, 135–155.
Analysis of explorers’ records of Aboriginal landscape burning in the Kimberley region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Vigilante, T., Ondei, S., Goonack, C., Williams, D., Young, P., and Bowman, D. M. (2017). Collaborative research on the ecology and management of the ‘Wulo’ monsoon rainforest in Wunambal Gaambera Country, North Kimberley, Australia. Land (Basel) 6, 68.
Collaborative research on the ecology and management of the ‘Wulo’ monsoon rainforest in Wunambal Gaambera Country, North Kimberley, Australia.Crossref | GoogleScholarGoogle Scholar |

Wayne, A. F., Wilson, B. A., and Woinarski, J. C. Z. (2017). Falling apart? Insights and lessons from three recent studies documenting rapid and severe decline in terrestrial mammal assemblages of northern, south-eastern and south-western Australia. Wildlife Research 44, 114–126.
Falling apart? Insights and lessons from three recent studies documenting rapid and severe decline in terrestrial mammal assemblages of northern, south-eastern and south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Wickham, H. (2016). ‘ggplot2: Elegant Graphics for Data Analysis.’ (Springer Nature: Cham, Switzerland.)

Woinarski, J. C. Z., Milne, D. J., and Wanganeen, G. (2001). Changes in mammal populations in relatively intact landscapes of Kakadu National Park, Northern Territory, Australia. Austral Ecology 26, 360–370.
Changes in mammal populations in relatively intact landscapes of Kakadu National Park, Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Risler, J., and Kean, L. (2004). Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical Eucalyptus open forest, Northern Territory, Australia. Austral Ecology 29, 156–176.
Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical Eucalyptus open forest, Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Armstrong, M., Brennan, K., Fisher, A., Griffiths, A. D., Hill, B., Milne, D. J., Palmer, C., Ward, S., Watson, M., Winderlich, S., and Young, S. (2010). Monitoring indicates rapid and severe decline of native small mammals in Kakadu National Park, northern Australia. Wildlife Research 37, 116–126.
Monitoring indicates rapid and severe decline of native small mammals in Kakadu National Park, northern Australia.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Legge, S., Fitzsimons, J. A., Traill, B. J., Burbidge, A. A., Fisher, A., Firth, R. S. C., Gordon, I. J., Griffiths, A. D., Johnson, C. N., McKenzie, N. L., Palmer, C., Radford, I., Rankmore, B., Ritchie, E. G., Ward, S., and Ziembicki, M. R. (2011). The disappearing mammal fauna of northern Australia: context, cause, and response. Conservation Letters 4, 192–201.
The disappearing mammal fauna of northern Australia: context, cause, and response.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences of the United States of America 112, 4531–4540.
Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J., Braby, M., Burbidge, A., Coates, D., Garnett, S., Fensham, R., Legge, S., McKenzie, N., Silcock, J., and Murphy, B. (2019). Reading the black book: the number, timing, distribution and causes of listed extinctions in Australia. Biological Conservation 239, 108261.
Reading the black book: the number, timing, distribution and causes of listed extinctions in Australia.Crossref | GoogleScholarGoogle Scholar |

Yibarbuk, D., Whitehead, P., Russell‐Smith, J., Jackson, D., Godjuwa, C., Fisher, A., Cooke, P., Choquenot, D., and Bowman, D. (2001). Fire ecology and Aboriginal land management in central Arnhem Land, northern Australia: a tradition of ecosystem management. Journal of Biogeography 28, 325–343.
Fire ecology and Aboriginal land management in central Arnhem Land, northern Australia: a tradition of ecosystem management.Crossref | GoogleScholarGoogle Scholar |

Ziembicki, M. R., Woinarski, J. C. Z., Webb, J. K., Vanderduys, E., Tuft, K., Smith, J., Ritchie, E. G., Reardon, T. B., Radford, I. J., and Preece, N. (2015). Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia. Therya 6, 169–226.
Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia.Crossref | GoogleScholarGoogle Scholar |