Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Seasonal habitat suitability models for a threatened species: the Gunnison sage-grouse

Anthony D. Apa https://orcid.org/0000-0002-7209-7695 A H , Kevin Aagaard B , Mindy B. Rice C , Evan Phillips D , Daniel J. Neubaum A , Nathan Seward E , Julie R. Stiver F and Scott Wait G
+ Author Affiliations
- Author Affiliations

A Colorado Parks and Wildlife, 711 Independent Avenue, Grand Junction, CO 81505, USA.

B Colorado Parks and Wildlife, 317 W Prospect Road, Fort Collins, CO 80526, USA.

C U.S. Fish & Wildlife Service, National Wildlife Refuge System Inventory & Monitoring Initiative, 1201 Oakridge Drive, Suite 320, Fort Collins, CO 80525, USA.

D Colorado Parks and Wildlife, 2300 South Townsend Avenue, Montrose, CO 81401, USA.

E Colorado Parks and Wildlife; 300 West New York Avenue, Gunnison, CO, 81230, USA.

F Colorado Parks and Wildlife, 4255 Sinton Road, Colorado Springs, CO, 80907, USA.

G Colorado Parks and Wildlife, 415 Turner Drive, Durango, CO, 81303, USA.

H Corresponding author. Email: tony.apa@state.co.us

Wildlife Research 48(7) 609-624 https://doi.org/10.1071/WR20006
Submitted: 14 January 2020  Accepted: 29 March 2021   Published: 17 May 2021

Abstract

Context: The Gunnison sage-grouse (Centrocercus minimus) has experienced range-wide declines and has been listed as Threatened by the USA Fish and Wildlife Service to receive protections under the USA Endangered Species Act. A draft Recovery Plan was recently completed. No seasonal habitat models have been developed for the small isolated populations.

Aims: To develop a habitat suitability model that was collaboratively developed between modellers and conservation practitioners to predict the probability of use by Gunnison sage-grouse during the breeding and summer seasons in designated occupied critical habitat, and extrapolate to adjacent designated unoccupied critical habitat.

Methods: We captured, marked and tracked Gunnison sage-grouse in nine different studies spanning 25 years. We used a suite of biotic, abiotic and vegetation local-level and population-scale covariates in a use-available resource selection function to develop models that predict the probability of use by Gunnison sage-grouse.

Key results: We used 9140 Gunnison sage-grouse locations from 406 individual birds to develop nine resource selection models for occupied habitat and extrapolated model predictions to adjacent unoccupied critical habitat in five small isolated Gunnison sage-grouse populations. A majority of our models validated well.

Conclusions: We report the first two-season resource use-based habitat suitability models for five of six small isolated Gunnison sage-grouse populations. Because of the unique habitat use by Gunnison sage-grouse in each population, we recommend that resource managers strategically target management actions in individual populations and avoid ‘one-size-fits-all’ habitat management prescriptions.

Implications: Our models will assist managers in the identification of seasonal habitats within populations to target management actions for Gunnison sage-grouse recovery.

Keywords: Centrocercus minimus, Colorado, Gunnison sage-grouse, habitat suitability model, occupied critical habitat, probability of use, recovery, resource selection function, Threatened, unoccupied critical habitat.


References

Aldridge, C. L., Nielsen, S. E., Beyer, H. L., Boyce, M. S., Connelly, J. W., Knick, S. T., and Schroeder, M. A. (2008). Range-wide patterns of greater sage-grouse persistence. Diversity & Distributions 14, 983–994.
Range-wide patterns of greater sage-grouse persistence.Crossref | GoogleScholarGoogle Scholar |

Aldridge, C. L., Saher, D., Childers, T. M., Stahlnecker, K. E., and Bowen, Z. H. (2012). Crucial nesting habitat for Gunnison sage-grouse: a spatially explicit hierarchical approach. The Journal of Wildlife Management 76, 391–406.
Crucial nesting habitat for Gunnison sage-grouse: a spatially explicit hierarchical approach.Crossref | GoogleScholarGoogle Scholar |

Amstrup, S. C. (1980). A radio-collar for game birds. The Journal of Wildlife Management 44, 214–217.
A radio-collar for game birds.Crossref | GoogleScholarGoogle Scholar |

Anthony, C. R., and Sanchez, D. M. (2018). Roost site selection of western long-eared myotis in a western juniper woodland. The Journal of Wildlife Management 82, 618–628.
Roost site selection of western long-eared myotis in a western juniper woodland.Crossref | GoogleScholarGoogle Scholar |

Arendt, P. A., and Baker, W. L. (2013). Northern Colorado Plateau piñon-juniper woodland decline over the past century. Ecosphere 4, 103.
Northern Colorado Plateau piñon-juniper woodland decline over the past century.Crossref | GoogleScholarGoogle Scholar |

Atamian, M. T., Sedinger, J. S., Heaton, J. S., and Blomberg, E. J. (2010). Landscape-level assessment of brood rearing habitat for greater sage-grouse in Nevada. The Journal of Wildlife Management 74, 1533–1543.
Landscape-level assessment of brood rearing habitat for greater sage-grouse in Nevada.Crossref | GoogleScholarGoogle Scholar |

Barton, K. (2020). MuMIn: Multi-model inference. R package version 1.43.17. Available at https://CRAN.R-project.org/package=MuMIn.

Baruch-Mordo, S., Evans, J. S., Severson, J. P., Naugle, D. E., Maestas, J. D., Kiesecker, J. M., Falkowski, M. J., Hagen, C. A., and Reese, K. P. (2013). Saving sage-grouse from the trees: a proactive solution to reducing a key threat to a candidate species. Biological Conservation 167, 233–241.
Saving sage-grouse from the trees: a proactive solution to reducing a key threat to a candidate species.Crossref | GoogleScholarGoogle Scholar |

Bates, J. D., Davies, K. W., Hulet, A., Miller, R. F., and Roundy, B. (2017). Sage-grouse groceries: forb response to piñon-juniper treatments. Rangeland Ecology and Management 70, 106–115.
Sage-grouse groceries: forb response to piñon-juniper treatments.Crossref | GoogleScholarGoogle Scholar |

Boyce, M. S., Vernier, P. R., Nielsen, S. E., and Schmiegelow, F. K. A. (2002). Evaluating resource selection functions. Ecological Modelling 157, 281–300.
Evaluating resource selection functions.Crossref | GoogleScholarGoogle Scholar |

Boyce, M. S., Mao, J. S., Merrill, E. H., Fortin, D., Turner, M. G., Fryxell, J., and Turchin, P. (2003). Scale and heterogeneity in habitat selection by elk in Yellowstone National Park. Ecoscience 10, 421–431.
Scale and heterogeneity in habitat selection by elk in Yellowstone National Park.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference: Practical Information-Theoretic Approach.’ (Springer-Verlag: New York, NY, USA.)

Camaclang, A. E., Maron, M., Martin, T. G., and Possingham, H. P. (2015). Current practices in the identification of critical habitat for threatened species. Conservation Biology 29, 482–492.
Current practices in the identification of critical habitat for threatened species.Crossref | GoogleScholarGoogle Scholar | 25472827PubMed |

Cianfrani, C., Lay, G. L., Hirzel, A. H., and Loy, A. (2010). Do habitat suitability models reliably predict the recovery areas of threatened species? Journal of Applied Ecology 47, 421–430.
Do habitat suitability models reliably predict the recovery areas of threatened species?Crossref | GoogleScholarGoogle Scholar |

Coates, P. S., Prochazka, B. G., Ricca, M. A., Gustafson, K. B., Ziegler, P., and Casazza, M. L. (2017). Pinyon and juniper encroachment into sagebrush ecosystems impacts distribution and survival of greater sage-grouse. Rangeland Ecology and Management 70, 25–38.
Pinyon and juniper encroachment into sagebrush ecosystems impacts distribution and survival of greater sage-grouse.Crossref | GoogleScholarGoogle Scholar |

Comstock, J. P., and Ehleringer, J. R. (1992). Plant adaptation in the Great Basin and Colorado Plateau. The Great Basin Naturalist 52, 195–215.

Connelly, J. W., Schroeder, M. A., Sands, A. R., and Braun, C. E. (2000). Guidelines to manage sage grouse populations and their habitats. Wildlife Society Bulletin 28, 967–985.

Connelly, J. W., Rinkes, T. E., and Braun, C. E. (2011). Characteristics of greater sage-grouse habitats; a landscape species at micro- and macroscales. In ‘Greater Sage-Grouse Ecology and Conservation of a Landscape Species and its Habitats’. (Eds S. T. Knick and J. W. Connelly.) pp. 69–84. Studies in Avian Biology No. 38. (University of California Press: Berkeley, CA, USA.)

Cooper, N. W., Rushing, C. S., and Marra, P. P. (2019). Reducing the conservation reliance of the endangered Kirtland’s warbler through adaptive management. The Journal of Wildlife Management 83, 1297–1305.
Reducing the conservation reliance of the endangered Kirtland’s warbler through adaptive management.Crossref | GoogleScholarGoogle Scholar |

Dahlgren, D. K., Chi, R., and Messmer, T. A. (2006). Greater sage-grouse response to sagebrush management in Utah. Wildlife Society Bulletin 34, 975–985.
Greater sage-grouse response to sagebrush management in Utah.Crossref | GoogleScholarGoogle Scholar |

Doherty, K. E., Naugle, D. E., and Walker, B. L. (2010). Greater sage-grouse nesting habitat: the importance of managing at multiple scales. The Journal of Wildlife Management 74, 1544–1553.
Greater sage-grouse nesting habitat: the importance of managing at multiple scales.Crossref | GoogleScholarGoogle Scholar |

Doherty, K. E., Hennig, J. D., Dinkins, J. B., Griffin, K. A., Cook, A. A., Maestas, J. D., Naugle, D. E., and Beck, J. L. (2018). Understanding biological effectiveness before scaling up range-wide restoration investments for Gunnison sage-grouse. Ecosphere 9, .
Understanding biological effectiveness before scaling up range-wide restoration investments for Gunnison sage-grouse.Crossref | GoogleScholarGoogle Scholar |

Donaldson, L., Wilson, R. J., and Maclean, I. M. D. (2017). Old concepts, new challenges: adapting landscape-scale conservation to the twenty-first century. Biodiversity and Conservation 26, 527–552.
Old concepts, new challenges: adapting landscape-scale conservation to the twenty-first century.Crossref | GoogleScholarGoogle Scholar | 32269427PubMed |

Dzialak, M. R., Olson, C. V., Harju, S. N. M., Webb, S. L., and Winstead, J. B. (2012). Temporal and hierarchical spatial components of animal occurrence: conserving seasonal habitat for greater sage-grouse. Ecosphere 3, 30.
Temporal and hierarchical spatial components of animal occurrence: conserving seasonal habitat for greater sage-grouse.Crossref | GoogleScholarGoogle Scholar |

Ebenhoch, K., Thornton, D., Shipley, L., Manning, J. A., and White, K. (2019). Effects of post-release movements on survival of grater sage-grouse. The Journal of Wildlife Management 83, 1314–1325.
Effects of post-release movements on survival of grater sage-grouse.Crossref | GoogleScholarGoogle Scholar |

Evans, D. M., Che-Castaldo, J. P., Crouse, D., Davis, F. W., Epanchin-Niell, R., Flather, C. H., and Kipp Frohlich, R. Goble, D. D., Li, J.-W., Male, T. D., Master, L. L., Moskwik, M. P., Neel, M. C., Noon, B. R., Parmesan, C., Schwartz, M. W., Scott, J. M., and Williams, B. K. (2016). Species recovery in the United States: increasing the effectiveness of the Endangered Species Act. Issues in Ecology, Report No. 20. Ecological Society of America.

Fedy, B. C., Doherty, K. E., Aldridge, C. L., O’Donnell, M., Beck, J., Bedrosian, B., Gummer, D., Holloran, M. J., Johnson, G. D., Kaczor, N. W., Kirol, C. P., Mandich, C. A., Marshall, D., Mckee, G., Olson, C., Pratt, A. C., Swanson, C. C., and Walker, B. L. (2014). Habitat prioritization across large landscapes, multiple seasons, and novel areas: an example using greater sage-grouse in Wyoming. Wildlife Monographs 190, 1–39.
Habitat prioritization across large landscapes, multiple seasons, and novel areas: an example using greater sage-grouse in Wyoming.Crossref | GoogleScholarGoogle Scholar |

Fischer, R. A., Reese, K. P., and Connelly, J. W. (1996). Influence of vegetal moisture content and nest fate on timing of female sage grouse migration. The Condor 98, 868–872.
Influence of vegetal moisture content and nest fate on timing of female sage grouse migration.Crossref | GoogleScholarGoogle Scholar |

Gallo, T., Stinson, L. T., and Pejchar, L. (2016). Pinyon-juniper removal has long-term effects on mammals. Forest Ecology and Management 377, 93–100.
Pinyon-juniper removal has long-term effects on mammals.Crossref | GoogleScholarGoogle Scholar |

Gibson, R. M., and Bachman, G. C. (1992). The costs of female choice in a lekking bird. Behavioral Ecology 3, 300–309.
The costs of female choice in a lekking bird.Crossref | GoogleScholarGoogle Scholar |

Gibson, D., Blomberg, E. J., Atamian, M. T., and Sedinger, J. S. (2016). Nesting habitat selection influences nest and early offspring survival in Greater Sage-Grouse. Ornithological Applications 118, 689–702.
Nesting habitat selection influences nest and early offspring survival in Greater Sage-Grouse.Crossref | GoogleScholarGoogle Scholar |

Giesen, K. M., Schoenberg, T. J., and Braun, C. E. (1982). Methods for trapping sage-grouse in Colorado. Wildlife Society Bulletin 10, 224–231.

Gómez, R. S., Pérez, J. G., Martín, M. D. M. L., and García, C. G. (2016). Collinearity diagnostic applied in ridge estimation through the variance inflation factor. Journal of Applied Statistics , .
Collinearity diagnostic applied in ridge estimation through the variance inflation factor.Crossref | GoogleScholarGoogle Scholar |

Greenwald, N. D., Suckling, K. F., and Pimm, S. L. (2012). Critical habitat and the role of peer review in government decisions. Bioscience 62, 686–690.
Critical habitat and the role of peer review in government decisions.Crossref | GoogleScholarGoogle Scholar |

Gruber, N. W. (2012). Population dynamics and movements of translocated and resident greater sage-grouse on Anthro Mountain, Utah. M.S. Thesis, Utah State University, Logan, CO, USA.

Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M. R., Possingham, H. P., and Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters 16, 1424–1435.
Predicting species distributions for conservation decisions.Crossref | GoogleScholarGoogle Scholar | 24134332PubMed |

Guisan, A., Thuiller, W., and Zimmermann, N. E. (2017). ‘Habitat Suitability and Distribution Models with applications in R.’ (Cambridge University Press: New York, NY, USA.)

Gunnison Sage-grouse Rangewide Steering Committee (GSRSC) (2005). ‘Gunnison sage-grouse Rangewide Conservation Plan.’ (Colorado Division of Wildlife: Denver, CO, USA.)

Hess, G. R., and Fischer, R. A. (2001). Communicating clearly about conservation corridors. Landscape and Urban Planning 55, 195–208.
Communicating clearly about conservation corridors.Crossref | GoogleScholarGoogle Scholar |

Hirzel, A. H., Hausser, J., Chessel, D., and Perrin, N. (2002). Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data. Ecology 83, 2027–2036.
Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data.Crossref | GoogleScholarGoogle Scholar |

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C., and Guisan, A. (2006). Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling 199, 142–152.
Evaluating the ability of habitat suitability models to predict species presences.Crossref | GoogleScholarGoogle Scholar |

Hoekstra, J. M., Fagan, W. F., and Bradley, J. E. (2002). A critical role for critical habitat in the recovery planning process? Not yet. Ecological Applications 12, 701–707.
A critical role for critical habitat in the recovery planning process? Not yet.Crossref | GoogleScholarGoogle Scholar |

Johnson, D. H. (1980). The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71.
The comparison of usage and availability measurements for evaluating resource preference.Crossref | GoogleScholarGoogle Scholar |

Johnson, C. J., and Gillingham, M. P. (2008). Sensitivity of species-distribution models to error, bias, and model design: an application to resource selection functions for woodland caribou. Ecological Modelling 213, 143–155.
Sensitivity of species-distribution models to error, bias, and model design: an application to resource selection functions for woodland caribou.Crossref | GoogleScholarGoogle Scholar |

Johnson, C. J., Nielsen, S. E., Merrill, E. H., McDonald, T. L., and Boyce, M. S. (2006). Resource selection functions based on use-availability data: theoretical motivation and evaluation methods. The Journal of Wildlife Management 70, 347–357.
Resource selection functions based on use-availability data: theoretical motivation and evaluation methods.Crossref | GoogleScholarGoogle Scholar |

Lukacs, P. M., Seglund, A., and Boyle, S. (2015). Effects of Gunnison Sage-Grouse habitat treatment effects on associated avifauna and vegetation structure. Avian Conservation & Ecology 10, 7.
Effects of Gunnison Sage-Grouse habitat treatment effects on associated avifauna and vegetation structure.Crossref | GoogleScholarGoogle Scholar |

Lyet, A., Thuiller, W., Cheylan, M., and Besnard, A. (2013). Fine-scale regional distribution modelling of rare and threatened species: bridging GIS Tools and conservation in practice. Diversity & Distributions 19, 651–663.
Fine-scale regional distribution modelling of rare and threatened species: bridging GIS Tools and conservation in practice.Crossref | GoogleScholarGoogle Scholar |

Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L., and Erickson, W. P. (2002). ‘Resource Selection by Animals: Statistical Design and Analysis for Field Studies.’ (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Mayor, S. J., Schneider, D. C., Schaefer, J. A., and Mahoney, S. P. (2009). Habitat selection at multiple scales. Ecoscience 16, 238–247.
Habitat selection at multiple scales.Crossref | GoogleScholarGoogle Scholar |

McAlpine, C. A., Rhodes, J. R., Bowen, M. E., Lunney, D., Callaghan, J. G., Mitchell, D. L., and Possingham, H. P. (2008). Can multiscale models of species’ distribution be generalized from region to region? A case study of koala. Journal of Applied Ecology 45, 558–567.
Can multiscale models of species’ distribution be generalized from region to region? A case study of koala.Crossref | GoogleScholarGoogle Scholar |

McGarigal, K., Cushman, S. A., and Stafford, S. G. (2000). ‘Multivariate Statistics for Wildlife and Ecology Research.’ (Springer-Verlag: New York, NY, USA.)

McGarigal, K., Wan, H. Y., Zeller, K. A., Timm, B. C., and Cushman, S. A. (2016). Multi-scale habitat selection modeling: a review and outlook. Landscape Ecology 31, 1161–1175.
Multi-scale habitat selection modeling: a review and outlook.Crossref | GoogleScholarGoogle Scholar |

McMahon, L. A., Rachlow, J. L., Shipley, L. A., Forbey, J. S., and Johnson, T. R. (2017). Habitat selection differs across hierarchical behaviors: selection of patches and intensity of patch use. Ecosphere 8, .
Habitat selection differs across hierarchical behaviors: selection of patches and intensity of patch use.Crossref | GoogleScholarGoogle Scholar |

Miller, R. F., Naugle, D. E., Maestas, J. D., Hagen, C. A., and Hall, G. (2017). Special issue: target woodland removal to recover at-risk grouse and their sagebrush-steppe and prairie ecosystems. Rangeland Ecology and Management 70, 1–8.
Special issue: target woodland removal to recover at-risk grouse and their sagebrush-steppe and prairie ecosystems.Crossref | GoogleScholarGoogle Scholar |

Musil, D. D., Connelly, J. W., and Reese, K. P. (1993). Movements, survival, and reproduction of sage grouse tranlocated into central Idaho. The Journal of Wildlife Management 57, 85–91.
Movements, survival, and reproduction of sage grouse tranlocated into central Idaho.Crossref | GoogleScholarGoogle Scholar |

Nams, V. O. (1990). ‘Locate II User’s Guide.’ (Truro, Nova Scotia, Canada.)

Nichols, J. D., Johnson, F. A., Williams, B. K., and Boomer, G. S. (2015). On formally integrating science and policy: walking the walk. Journal of Applied Ecology 52, 539–543.
On formally integrating science and policy: walking the walk.Crossref | GoogleScholarGoogle Scholar |

Northrup, J. M., Hooten, M. B., Anderson, C. R., and Wittemyer, G. (2013). Practical guidance on characterizing availability in resource selection functions under a use-availability design. Ecology 94, 1456–1463.
Practical guidance on characterizing availability in resource selection functions under a use-availability design.Crossref | GoogleScholarGoogle Scholar | 23951705PubMed |

Olson, R. A., and Whitson, T. D. (2002). Restoring structure in late-successional sagebrush communities by thinning with tebuthiuron. Restoration Ecology 10, 146–155.
Restoring structure in late-successional sagebrush communities by thinning with tebuthiuron.Crossref | GoogleScholarGoogle Scholar |

Osborne, P. E., and Seddon, P. J. (2012). Selecting suitable habitats for reintroductions: variation, change and the role of species distribution modelling. In ‘Reintroduction Biology’. (Eds J. G. Ewen, D. P. Armstrong, K. A. Parker, and P. J. Seddon.) pp. 73–104. (John Wiley & Sons, Inc.: Hoboken, NJ, USA.)

Ouren, D. S., Cade, B. S., Holsinger, K. W., and Siders, M. S. (2019). Are lek disturbance buffers equitable for all Gunnison sage-grouse populations? Journal of Fish and Wildlife Management 10, 51–61.

Oyler-McCance, S. J., Burnham, K. P., and Braun, C. E. (2001). Influence of changes in sagebrush on Gunnison sage grouse in southwestern Colorado. The Southwestern Naturalist 46, 323–331.
Influence of changes in sagebrush on Gunnison sage grouse in southwestern Colorado.Crossref | GoogleScholarGoogle Scholar |

Oyler-McCance, S. J., St. John, J., Taylor, S. E., Apa, A. D., and Quinn, T. W. (2005). Population genetics of Gunnison sage-grouse: implications for management. The Journal of Wildlife Management 69, 630–637.
Population genetics of Gunnison sage-grouse: implications for management.Crossref | GoogleScholarGoogle Scholar |

Prochazka, B. G., Coates, P. S., Ricca, M. A., Casazza, M. L., Gustafson, K. B., and Hull, J. M. (2017). Encounters with pinyon-juniper influence riskier movements in greater sage-grouse across the Great Basin. Rangeland Ecology and Management 70, 39–49.
Encounters with pinyon-juniper influence riskier movements in greater sage-grouse across the Great Basin.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2013). ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria.) Available at http://www.R-project.org/.

Rice, M. B., Apa, A. D., and Wiechman, L. A. (2017). The importance of seasonal resource selection when managing a threatened species: targeting conservation actions within critical habitat designations for the Gunnison sage-grouse. Wildlife Research , .
The importance of seasonal resource selection when managing a threatened species: targeting conservation actions within critical habitat designations for the Gunnison sage-grouse.Crossref | GoogleScholarGoogle Scholar |

Riley, S. J., DeGloria, S. D., and Elliot, R. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5, 23–27.

Robinson, O. J., McGowan, C. P., and Apodaca, J. J. (2016). Decision analysis for habitat conservation of an endangered, range-limited salamander. Animal Conservation 19, 561–569.
Decision analysis for habitat conservation of an endangered, range-limited salamander.Crossref | GoogleScholarGoogle Scholar |

Rosenfeld, J. S., and Hatfield, T. (2006). Information needs for assessing critical habitat of freshwater fish. Canadian Journal of Fisheries and Aquatic Sciences 63, 683–698.
Information needs for assessing critical habitat of freshwater fish.Crossref | GoogleScholarGoogle Scholar |

Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1, 103–113.
Simple means to improve the interpretability of regression coefficients.Crossref | GoogleScholarGoogle Scholar |

Schroeder, M. A., and Braun, C. E. (1991). Walk-in traps for capturing greater prairie-chickens. Journal of Field Ornithology 62, 378–385.

Schroeder, M. A., Aldridge, C. L., Apa, A. D., Bohn, J. R., Braun, C. E., Bunnell, D. S., Connelly, J. W., Deibert, P. A., Gardner, S. C., Hilliard, M. A., Kobriger, G. D., McAdam, S. M., McCarthy, J. J., Mitchell, D. L., Rickerson, E. V., and Stiver, S. J. (2004). Distribution of sage-grouse in North America. The Condor 106, 363–376.
Distribution of sage-grouse in North America.Crossref | GoogleScholarGoogle Scholar |

Scott, J. M., Goble, D. D., Haines, A. M., Weins, J. M., and Neel, M. C. (2010). Conservation-reliant species and the future of conservation. Conservation Letters 3, 91–97.
Conservation-reliant species and the future of conservation.Crossref | GoogleScholarGoogle Scholar |

Severson, J. P., Hagen, C. A., Maestas, J. D., Naugle, D. E., Forbes, J. T., and Reese, K. P. (2017a). Restoring sage-grouse nesting habitat through removal of early successional conifer. Restoration Ecology 25, 1026–1034.
Restoring sage-grouse nesting habitat through removal of early successional conifer.Crossref | GoogleScholarGoogle Scholar |

Severson, J. P., Hagen, C. A., Maestas, J. D., Naugle, D. E., Forbes, J. T., and Reese, K. P. (2017b). Short-term response of sage-grouse nesting to conifer removal in the northern Great Basin. Rangeland Ecology and Management 70, 50–58.
Short-term response of sage-grouse nesting to conifer removal in the northern Great Basin.Crossref | GoogleScholarGoogle Scholar |

Springer, J. T. (1979). Some sources of bias and sampling error in radio triangulation. The Journal of Wildlife Management 43, 926–935.
Some sources of bias and sampling error in radio triangulation.Crossref | GoogleScholarGoogle Scholar |

Stiver, J. R. (2007). Polygyny and effective population size in lekking Gunnison sage-grouse. M.Sc. Thesis, University of Nebraska, Lincoln, NE, USA.

Stiver, J. R., Apa, A. D., Remington, T. E., and Gibson, R. M. (2008). Polygyny and female breeding failure reduce effective population size in the lekking Gunnison sage-grouse. Biological Conservation 141, 472–481.
Polygyny and female breeding failure reduce effective population size in the lekking Gunnison sage-grouse.Crossref | GoogleScholarGoogle Scholar |

Stokland, J. N., Halvorsen, R., and Støa, B. (2011). Species distribution modeling: effect of design and sample size of pseudo-absence observations. Ecological Modelling 222, 1800–1809.
Species distribution modeling: effect of design and sample size of pseudo-absence observations.Crossref | GoogleScholarGoogle Scholar |

Stringham, R. B. (2010). Greater sage-grouse response to sagebrush reduction treatments in Rich County, Utah. M.Sc. Thesis, Utah State University, Logan, UT, USA.

Su, Y. S., and Yajima, M. (2020). R2jags: Using R to Run ‘JAGS’. R package version 0.6-1. Available at https://CRAN.R-project.org/package=R2jags.

Toepfer, J. E., Newell, J. A., and Monarch, J. (1988). A method for trapping prairie grouse hens on display grounds. In ‘Prairie chickens on the Sheyenne National Grasslands’. (Ed. A. D. Bjugstad.) pp. 21–23. General Technical Report RM-159. (U.S. Department of Agriculture Forest Service.)

United States Census Bureau (USCB) (2017). ‘U.S. Census 2017 TIGER/Line® files technical document.’ (US Census Bureau: Washington, DC, USA.)

United States Fish and Wildlife Service (USFWS) (2014a). Endangered and Threatened Wildlife and Plants; Determination for the Gunnison Sage-grouse as a Threatened or Endangered Species. Final Rule. 50 CFR Part 17. Federal Register 79, 69192–69310.

USFWS (2014b). Endangered and Threatened Wildlife and Plants; Determination of critical habitat for Gunnison Sage-grouse; Final Rule. 50 CFR Part 17. Federal Register 79, 69311–69363.

USFWS (2016). National wetlands inventory. Available at http://www.fws.gov/wetlands/.

USFWS (2019a). ‘Species status assessment report for the Gunnison Sage-Grouse (Centrocercus minimus).’ Version: 20 April 2019. (USFWS: Lakewood, CO, USA.)

USFWS (2019b). ‘Draft recovery plan for Gunnison sage-grouse (Centrocercus minimus).’ Draft version: 20 September 2019. (USFWS: Denver, CO, USA.)

Wakkinen, W. L., Reese, K. P., Connelly, J. W., and Fischer, R. A. (1992). An improved spotlighting technique for capturing sage-grouse. Wildlife Society Bulletin 20, 425–426.

West, N. E. (1983). Great Basin-Colorado Plateau sagebrush semi-desert. In ‘Temperate Deserts and Semi-Deserts’. (Ed. N. E. West.) pp. 331–350. (Elsevier: Amsterdam, The Netherlands.)

Wiens, T. S., Dale, B. C., Boyce, M. S., and Kershaw, G. P. (2008). Three way k-fold cross validation of resource selection functions. Ecological Modelling 212, 244–255.
Three way k-fold cross validation of resource selection functions.Crossref | GoogleScholarGoogle Scholar |

Winward, A. H. (2004). ‘Sagebrush of Colorado; Taxonomy, Distribution, Ecology & Management.’ (Colorado Division of Wildlife: Fort Collins, CO, USA.)

Wisdom, M. J., Meinke, C. W., Knick, S. T., and Schroeder, M. A. (2011). Factors associated with extirpation of sage-grouse. In ‘Greater Sage-Grouse Ecology and Conservation of a Landscape Species and its Habitats’. (Eds S. T. Knick and J. W. Connelly.) pp. 451–472. Studies in Avian Biology No. 38. (University of California Press: Berkeley, CA, USA.)

Withers, K., and Mead, J. I. (1993). Late Quaternary vegetation and climate in the Escalante River Basin on the central Colorado Plateau. The Great Basin Naturalist 53, 145–161.

Young, J. R., Braun, C. E., Oyler-McCance, S. J., Hupp, J. W., and Quinn, T. W. (2000). A new species of sage-grouse (Phasianidae:Centrocercus) from southwestern Colorado. The Wilson Bulletin 112, 445–453.
A new species of sage-grouse (Phasianidae:Centrocercus) from southwestern Colorado.Crossref | GoogleScholarGoogle Scholar |

Zimmerman, S. J., Aldridge, C. L., Apa, A. D., and Oyler-McCance, S. J. (2019). Evaluation of genetic change from translocation among Gunnison Sage-Grouse (Centrocercus minimus) populations. Ornithological Applications 121, .
Evaluation of genetic change from translocation among Gunnison Sage-Grouse (Centrocercus minimus) populations.Crossref | GoogleScholarGoogle Scholar |

Zuur, A. F., Ieno, E. N., and Elphick, C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1, 3–14.
A protocol for data exploration to avoid common statistical problems.Crossref | GoogleScholarGoogle Scholar |