Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Living with the enemy: a threatened prey species coexisting with feral cats on a fox-free island

Vivianna Miritis https://orcid.org/0000-0001-6820-8236 A B , Anthony R. Rendall https://orcid.org/0000-0002-7286-9288 A , Tim S. Doherty A , Amy L. Coetsee B and Euan G. Ritchie A
+ Author Affiliations
- Author Affiliations

A School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Vic. 3125, Australia.

B Wildlife Conservation and Science, Zoos Victoria, Elliot Avenue, Parkville, Vic. 3052, Australia.

C Corresponding author. Email: vivianna.miritis@sydney.edu.au

Wildlife Research 47(8) 633-642 https://doi.org/10.1071/WR19202
Submitted: 18 October 2019  Accepted: 28 January 2020   Published: 12 June 2020

Abstract

Context: Feral domestic cats (Felis catus) have contributed to substantial loss of Australian wildlife, particularly small- and medium-sized terrestrial mammals. However, mitigating cat impacts remains challenging. Understanding the factors that facilitate coexistence between native prey and their alien predators could aid better pest management and conservation actions.

Aims: We estimated feral cat density, examined the impact of habitat cover on long-nosed potoroos (Potorous tridactylus tridactylus), and assessed the spatial and temporal interactions between cats and potoroos in the ‘Bluegums’ area of French Island, south-eastern Australia.

Materials and methods: We operated 31 camera stations across Bluegums for 99 consecutive nights in each of winter 2018 and summer 2018/19. We used a spatially explicit capture–recapture model to estimate cat density, and two-species single-season occupancy models to assess spatial co-occurrence of cats and potoroos. We assessed the influence of vegetation cover and cat activity on potoroo activity by using a dynamic occupancy model. We also used image timestamps to describe and compare the temporal activities of the two species.

Key results: Bluegums had a density of 0.77 cats per km2 across both seasons, although this is a conservative estimate because of the presence of unidentified cats. Cats and long-nosed potoroos were detected at 94% and 77% of camera stations, respectively. Long-nosed potoroo detectability was higher in denser vegetation and this pattern was stronger at sites with high cat activity. Cats and potoroos overlapped in their temporal activity, but their peak activity times differed.

Conclusions: Feral cat density at Bluegums, French Island, is higher than has been reported for mainland Australian sites, but generally lower than in other islands. Long-nosed potoroos were positively associated with cats, potentially indicating cats tracking potoroos as prey or other prey species that co-occur with potoroos. Temporal activity of each species differed, and potoroos sought more complex habitat, highlighting possible mechanisms potoroos may use to reduce their predation risk when co-occurring with cats.

Implications: Our study highlighted how predator and prey spatial and temporal interactions, and habitat cover and complexity (ecological refuges), may influence the ability for native prey to coexist with invasive predators. We encourage more consideration and investigation of these factors, with the aim of facilitating more native species to persist with invasive predators or be reintroduced outside of predator-free sanctuaries, exclosures and island safe havens.

Additional keywords: biodiversity, conservation, habitat use, introduced species, invasive species, islands, pest management, population density, predator–prey interactions, wildlife management.


References

Algar, D., Angus, G. J., and Onus, M. L. (2011). Eradication of feral cats on Rottnest Island, Western Australia. Journal of the Royal Society of Western Australia 94, 439–443.

Algar, D., Onus, M., and Hamilton, N. (2013). Feral cat control as part of rangelands restoration at Lorna Glen (Matuwa), Western Australia: the first seven years. Conservation Science Western Australia 8, 367–381.

Andren, M., Milledge, D., Scotts, D., and Smith, J. (2018). The decline of the northern long-nosed potoroo Potorous tridactylus tridactylus on the far north coast of New South Wales. Australian Zoologist 39, 414–423.
The decline of the northern long-nosed potoroo Potorous tridactylus tridactylus on the far north coast of New South Wales.Crossref | GoogleScholarGoogle Scholar |

Balme, G. A., Hunter, L. T. B., and Slotow, R. (2009). Evaluating methods for counting cryptic carnivores. The Journal of Wildlife Management 73, 433–441.
Evaluating methods for counting cryptic carnivores.Crossref | GoogleScholarGoogle Scholar |

Banks, P. B., and Dickman, C. R. (2007). Alien predation and the effects of multiple levels of prey naiveté. Trends in Ecology & Evolution 22, 229–230.
Alien predation and the effects of multiple levels of prey naiveté.Crossref | GoogleScholarGoogle Scholar |

Banks, P. B., Carthey, A. J. R., and Bytheway, J. P. (2018). Australian native mammals recognize and respond to alien predators: a meta-analysis. Proceedings. Biological Sciences 285, 20180857.
Australian native mammals recognize and respond to alien predators: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 30135153PubMed |

Bannister, H., Brandle, R., and Moseby, K. (2018). Antipredator behaviour of a native marsupial is relaxed when mammalian predators are excluded. Wildlife Research 45, 726–736.
Antipredator behaviour of a native marsupial is relaxed when mammalian predators are excluded.Crossref | GoogleScholarGoogle Scholar |

Bennett, A. F. (1993). Microhabitat use by the long-nosed potoroo, Potorous tridactylus, and other small mammals in remnant forest vegetation of south-western Victoria. Wildlife Research 20, 267–285.
Microhabitat use by the long-nosed potoroo, Potorous tridactylus, and other small mammals in remnant forest vegetation of south-western Victoria.Crossref | GoogleScholarGoogle Scholar |

Burbidge, A. A., and McKenzie, N. L. (1989). Patterns in the modern decline of western Australia’s vertebrate fauna: causes and conservation implications. Biological Conservation 50, 143–198.
Patterns in the modern decline of western Australia’s vertebrate fauna: causes and conservation implications.Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology (2018). ‘Climate Data Online.’ Available at http://www.bom.gov.au/climate/ [verified 17 September 2019].

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Inference. A Practical Information-theoretical Approach.’ 2nd edn. (Springer-Verlag: New York, NY, USA.)

Claridge, A. W., Tanton, M. T., and Cunningham, R. B. (1993). Hypogeal fungi in the diet of the long-nosed potoroo (Potorous tridactylus) in mixed-species and regrowth eucalypt forest stands in south-eastern Australia. Wildlife Research 20, 321–337.
Hypogeal fungi in the diet of the long-nosed potoroo (Potorous tridactylus) in mixed-species and regrowth eucalypt forest stands in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Claridge, A. W., Seebeck, J., and Rose, R. (2007). ‘Bettongs, Potoroos and the Musky Rat‐kangaroo.’ (CSIRO Publishing: Melbourne, Vic., Australia.)

Clout, M. N., and Russell, J. C. (2007). The invasion ecology of mammals: a global perspective. Wildlife Research 35, 180–184.
The invasion ecology of mammals: a global perspective.Crossref | GoogleScholarGoogle Scholar |

Cove, M. V., Gardner, B., Simons, T. R., Kays, R., and O’Connell, A. F. (2018). Free-ranging domestic cats (Felis catus) on public lands: estimating density, activity, and diet in the Florida Keys. Biological Invasions 20, 333–344.
Free-ranging domestic cats (Felis catus) on public lands: estimating density, activity, and diet in the Florida Keys.Crossref | GoogleScholarGoogle Scholar |

Cunningham, C. X., Johnson, C. N., Hollings, T., Kreger, K., and Jones, M. E. (2019a). Trophic rewilding establishes a landscape of fear: Tasmanian devil introduction increases risk-sensitive foraging in a key prey species. Ecography 42, 2053–2059.
Trophic rewilding establishes a landscape of fear: Tasmanian devil introduction increases risk-sensitive foraging in a key prey species.Crossref | GoogleScholarGoogle Scholar |

Cunningham, C. X., Scoleri, V., Johnson, C. N., Barmuta, L. A., and Jones, M. E. (2019b). Temporal partitioning of activity: rising and falling top-predator abundance triggers community-wide shifts in diel activity. Ecography 42, 2157–2168.
Temporal partitioning of activity: rising and falling top-predator abundance triggers community-wide shifts in diel activity.Crossref | GoogleScholarGoogle Scholar |

DELWP (2018). ‘Victorian Biodiversity Atlas.’ Available at https://www.environment.vic.gov.au/biodiversity/victorian-biodiversity-atlas [verified 23 August 2019].

Dickman, C. R. (2012). Fences or ferals? Benefits and costs of conservation fencing in Australia. In ‘Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes?’. (Eds M. J. Somers and M. Hayward.) pp. 43–63. (Springer: Sydney, NSW, Australia.)

Doherty, T. S., and Ritchie, E. G. (2017). Stop jumping the gun: a call for evidence-based invasive predator management. Conservation Letters 10, 15–22.
Stop jumping the gun: a call for evidence-based invasive predator management.Crossref | GoogleScholarGoogle Scholar |

Doherty, T. S., Davis, R. A., van Etten, E. J. B., Algar, D., Collier, N., Dickman, C. R., Edwards, G., Masters, P., Palmer, R., and Robinson, S. (2015a). A continental-scale analysis of feral cat diet in Australia. Journal of Biogeography 42, 964–975.
A continental-scale analysis of feral cat diet in Australia.Crossref | GoogleScholarGoogle Scholar |

Doherty, T. S., Dickman, C. R., Nimmo, D. G., and Ritchie, E. G. (2015b). Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances. Biological Conservation 190, 60–68.
Multiple threats, or multiplying the threats? Interactions between invasive predators and other ecological disturbances.Crossref | GoogleScholarGoogle Scholar |

Doherty, T. S., Dickman, C. R., Johnson, C. N., Legge, S. M., Ritchie, E. G., and Woinarski, J. C. Z. (2017). Impacts and management of feral cats Felis catus in Australia. Mammal Review 47, 83–97.
Impacts and management of feral cats Felis catus in Australia.Crossref | GoogleScholarGoogle Scholar |

Efford, M. G. (2019). ‘Spatially Explicit Capture–recapture Models. R Package Version 3.2.0.’ Available at https://cran.r-project.org/package=secr [verified 26 September 2019].

Efford, M. G., Dawson, D. K., and Borchers, D. L. (2009). Population density estimated from locations of individuals on a passive detector array. Ecology 90, 2676–2682.
Population density estimated from locations of individuals on a passive detector array.Crossref | GoogleScholarGoogle Scholar | 19886477PubMed |

Fiske, I. J., and Chandler, R. B. (2011). Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43, 1–23.
Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance.Crossref | GoogleScholarGoogle Scholar |

Fleming, P. A., Anderson, H., Prendergast, A. S., Bretz, M. R., Valentine, L. E., and Hardy, G. E. S. (2014). Is the loss of australian digging mammals contributing to a deterioration in ecosystem function? Mammal Review 44, 94–108.
Is the loss of australian digging mammals contributing to a deterioration in ecosystem function?Crossref | GoogleScholarGoogle Scholar |

Frankham, G. J., Reed, R. L., Fletcher, T. P., and Handasyde, K. A. (2011). Population ecology of the long-nosed potoroo (Potorous tridactylus) on French Island, Victoria. Australian Mammalogy 33, 73–81.
Population ecology of the long-nosed potoroo (Potorous tridactylus) on French Island, Victoria.Crossref | GoogleScholarGoogle Scholar |

Frankham, G. J., Handasyde, K. A., Norton, M., Murray, A., and Eldridge, M. D. B. (2014). Molecular detection of intra-population structure in a threatened potoroid, Potorous tridactylus: conservation management and sampling implications. Conservation Genetics 15, 547–560.
Molecular detection of intra-population structure in a threatened potoroid, Potorous tridactylus: conservation management and sampling implications.Crossref | GoogleScholarGoogle Scholar |

Frey, S., Fisher, J. T., Burton, A. C., and Volpe, J. P. (2017). Investigating animal activity patterns and temporal niche partitioning using camera-trap data: challenges and opportunities. Remote Sensing in Ecology and Conservation 3, 123–132.
Investigating animal activity patterns and temporal niche partitioning using camera-trap data: challenges and opportunities.Crossref | GoogleScholarGoogle Scholar |

Halstead, L. M., Sutherland, D. R., Valentine, L. E., Rendall, A. R., Coetsee, A. L., and Ritchie, E. G. (2020). Digging up the dirt: quantifying the effects on soil of a translocated ecosystem engineer. Austral Ecology 45, 97–108.
Digging up the dirt: quantifying the effects on soil of a translocated ecosystem engineer.Crossref | GoogleScholarGoogle Scholar |

Hernandez-Santin, L., Goldizen, A. W., and Fisher, D. O. (2016). Introduced predators and habitat structure influence range contraction of an endangered native predator, the northern quoll. Biological Conservation 203, 160–167.
Introduced predators and habitat structure influence range contraction of an endangered native predator, the northern quoll.Crossref | GoogleScholarGoogle Scholar |

Hill, R., Coetsee, A., and Sutherland, D. R. (2018). Recovery of the mainland supspecies of eastern barred bandicoot. In ‘Recovering Australian Threatened Species’. (Eds S. Garnett, P. Latch, D. Lindenmayer, and J. C. Z. Woinarski.) pp. 249–258. (CSIRO Publishing: Melbourne, Vic., Australia.)

Holland, G. J., and Bennett, A. F. (2007). Occurrence of small mammals in a fragmented landscape: the role of vegetation heterogeneity. Wildlife Research 34, 387–397.
Occurrence of small mammals in a fragmented landscape: the role of vegetation heterogeneity.Crossref | GoogleScholarGoogle Scholar |

Jolly, C., Webb, J., and Phillips, B. (2018). The perils of paradise: antipredator behaviours missing from an endangered species conserved on an island. Biology Letters 14, 20180222.
The perils of paradise: antipredator behaviours missing from an endangered species conserved on an island.Crossref | GoogleScholarGoogle Scholar | 29875211PubMed |

Jones, H. P., Holmes, N. D., Butchart, S. H. M., Tershy, B. R., Kappes, P. J., Corkery, I., Aguirre-Muñoz, A., Armstrong, D. P., Bonnaud, E., Burbidge, A. A., Campbell, K., Courchamp, F., Cowan, P. E., Cuthbert, R. J., Ebbert, S., Genovesi, P., Howald, G. R., Keitt, B. S., Kress, S. W., Miskelly, C. M., Oppel, S., Poncet, S., Rauzon, M. J., Rocamora, G., Russell, J. C., Samaniego-Herrera, A., Seddon, P. J., Spatz, D. R., Towns, D. R., and Croll, D. A. (2016). Invasive mammal eradication on islands results in substantial conservation gains. Proceedings of the National Academy of Sciences of the United States of America 113, 4033–4038.
Invasive mammal eradication on islands results in substantial conservation gains.Crossref | GoogleScholarGoogle Scholar | 27001852PubMed |

Kilshaw, K., Johnson, P. J., Kitchener, A. C., and Macdonald, D. W. (2015). Detecting the elusive Scottish wildcat Felis silvestris silvestris using camera trapping. Oryx 49, 207–215.
Detecting the elusive Scottish wildcat Felis silvestris silvestris using camera trapping.Crossref | GoogleScholarGoogle Scholar |

Krebs, C. J., Boonstra, R., Gilbert, S., Reid, D., Kenney, A. J., and Hofer, E. J. (2011). Density estimation for small mammals from livetrapping grids: rodents in northern Canada. Journal of Mammalogy 92, 974–981.
Density estimation for small mammals from livetrapping grids: rodents in northern Canada.Crossref | GoogleScholarGoogle Scholar |

Lazenby, B. T., Mooney, N. J., and Dickman, C. R. (2014). Effects of low-level culling of feral cats in open populations: a case study from the forests of southern Tasmania. Wildlife Research 41, 407–420.
Effects of low-level culling of feral cats in open populations: a case study from the forests of southern Tasmania.Crossref | GoogleScholarGoogle Scholar |

Legge, S., Murphy, B. P., McGregor, H., Woinarski, J. C. Z., Augusteyn, J., Ballard, G., Baseler, M., Buckmaster, T., Dickman, C. R., Doherty, T., Edwards, G., Eyre, T., Fancourt, B. A., Ferguson, D., Forsyth, D. M., Geary, W. L., Gentle, M., Gillespie, G., Greenwood, L., Hohnen, R., Hume, S., Johnson, C. N., Maxwell, M., McDonald, P. J., Morris, K., Moseby, K., Newsome, T., Nimmo, D., Paltridge, R., Ramsey, D., Read, J., Rendall, A., Rich, M., Ritchie, E., Rowland, J., Short, J., Stokeld, D., Sutherland, D. R., Wayne, A. F., Woodford, L., and Zewe, F. (2017). Enumerating a continental-scale threat: how many feral cats are in Australia? Biological Conservation 206, 293–303.
Enumerating a continental-scale threat: how many feral cats are in Australia?Crossref | GoogleScholarGoogle Scholar |

Legge, S., Woinarski, J. C. Z., Burbidge, A., Palmer, R., Ringma, J., Radford, J., Mitchell, N., Bode, M., Wintle, B. A., Baseler, M., Bentley, J., Copley, P., Dexter, N., Dickman, C. R., Gillespie, G., Hill, B., Johnson, C., Latch, P., Letnic, M., Manning Adrian, D., McCreless, E., Menkhorst, P., Morris, K., Moseby, K. E., Page, M., Pannell, D., and Tuft, K. (2018). Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to protecting mammal species that are susceptible to introduced predators. Wildlife Research 45, 627–644.
Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to protecting mammal species that are susceptible to introduced predators.Crossref | GoogleScholarGoogle Scholar |

Lima, S. L., and Dill, L. M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology 68, 619–640.
Behavioral decisions made under the risk of predation: a review and prospectus.Crossref | GoogleScholarGoogle Scholar |

Luna-Mendoza, L., Barredo-Barberena, J. M., Hernández-Montoya, J. C., Aguirre-Muñoz, A., Méndez-Sánchez, F. A., Ortiz-Alcaraz, A., and Félix-Lizárraga, M. (2011). Planning for the eradication of feral cats on Guadalupe Island, México: home range, diet, and bait acceptance. In ‘Island Invasives: Eradication and Management’. (Eds C. R. Veitch, M. N. Clout, and D. R. Towns.) pp. 192–197. (IUCN: Auckland, New Zealand.)

MacKenzie, D., and Hines, J. (2018). ‘PRESENCE.’ Available at https://www.mbr-pwrc.usgs.gov/software/presence.html [verified 21 July 2019].

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., and Hines, J. E. (Ed.) (2018). Species co-occurrence. In ‘Occupancy Estimation and Modeling’. pp. 509–556. (Academic Press: Cambridge, MA, USA.)

Marlow, N. J., Thomas, N. D., Williams, A. A. E., MacMahon, B., Lawson, J., Hitchen, Y., Angus, J., and Berry, O. (2015). Cats (Felis catus) are more abundant and are the dominant predator of woylies (Bettongia penicillata) after sustained fox (Vulpes vulpes) control. Australian Journal of Zoology 63, 18–27.
Cats (Felis catus) are more abundant and are the dominant predator of woylies (Bettongia penicillata) after sustained fox (Vulpes vulpes) control.Crossref | GoogleScholarGoogle Scholar |

McGregor, H. W., Legge, S., Potts, J., Jones, M. E., and Johnson, C. N. (2015). Density and home range of feral cats in north-western Australia. Wildlife Research 42, 223–231.
Density and home range of feral cats in north-western Australia.Crossref | GoogleScholarGoogle Scholar |

McHugh, D., Goldingay, R. L., Link, J., and Letnic, M. (2019). Habitat and introduced predators influence the occupancy of small threatened macropods in subtropical Australia. Ecology and Evolution 9, 6300–6317.
Habitat and introduced predators influence the occupancy of small threatened macropods in subtropical Australia.Crossref | GoogleScholarGoogle Scholar | 31236222PubMed |

McTier, M. (2000). The home ranges and habitat selection in a population of feral cats (Felis catus) on French Island, Victoria. B.Sc.(Hons) Thesis, Monash University, Melbourne, Vic., Australia.

Moseby, K. E., and Hill, B. M. (2011). The use of poison baits to control feral cats and red foxes in arid South Australia I. Aerial baiting trials. Wildlife Research 38, 338–349.
The use of poison baits to control feral cats and red foxes in arid South Australia I. Aerial baiting trials.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Peacock, D. E., and Read, J. L. (2015). Catastrophic cat predation: a call for predator profiling in wildlife protection programs. Biological Conservation 191, 331–340.
Catastrophic cat predation: a call for predator profiling in wildlife protection programs.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Lollback, G. W., and Lynch, C. E. (2018). Too much of a good thing; successful reintroduction leads to overpopulation in a threatened mammal. Biological Conservation 219, 78–88.
Too much of a good thing; successful reintroduction leads to overpopulation in a threatened mammal.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Letnic, M., Blumstein, D. T., and West, R. (2019). Understanding predator densities for successful co-existence of alien predators and threatened prey. Austral Ecology 44, 409–419.
Understanding predator densities for successful co-existence of alien predators and threatened prey.Crossref | GoogleScholarGoogle Scholar |

Pedler, R. D., Brandle, R., Read, J. L., Southgate, R., Bird, P., and Moseby, K. E. (2016). Rabbit biocontrol and landscape-scale recovery of threatened desert mammals. Conservation Biology 30, 774–782.
Rabbit biocontrol and landscape-scale recovery of threatened desert mammals.Crossref | GoogleScholarGoogle Scholar | 26852773PubMed |

QGIS Development Team (2019). ‘QGIS Geographic Information System.’ Available at http://qgis.osgeo.org [verified 27 September 2019].

R Core Team (2017). R: a language and environment for statistical computing. R Foundation for Statistical Computing 1, 409.

Radford, J. Q., Woinarski, J. C. Z., Legge, S., Baseler, M., Bentley, J., Burbidge, A. A., Bode, M., Copley, P., Dexter, N., Dickman, C. R., Gillespie, G., Hill, B., Johnson, C. N., Kanowski, J., Latch, P., Letnic, M., Manning, A., Menkhorst, P. W., Mitchell, N., Morris, K., Moseby, K. E., Page, M., and Ringma, J. (2018). Degrees of population-level susceptibility of Australian mammal species to predation by the introduced red fox Vulpes vulpes and feral cat Felis catus. Wildlife Research 45, 645–657.
Degrees of population-level susceptibility of Australian mammal species to predation by the introduced red fox Vulpes vulpes and feral cat Felis catus.Crossref | GoogleScholarGoogle Scholar |

Rayner, M. J., Hauber, M. E., Imber, M. J., Stamp, R. K., and Clout, M. N. (2007). Spatial heterogeneity of mesopredator release within an oceanic island system. Proceedings of the National Academy of Sciences of the United States of America 104, 20862–20865.
Spatial heterogeneity of mesopredator release within an oceanic island system.Crossref | GoogleScholarGoogle Scholar | 18083843PubMed |

Reside, A. E., Briscoe, N. J., Dickman, C. R., Greenville, A. C., Hradsky, B. A., Kark, S., Kearney, M. R., Kutt, A. S., Nimmo, D. G., Pavey, C. R., Read, J. L., Ritchie, E. G., Roshier, D., Skroblin, A., Stone, Z., West, M., and Fisher, D. O. (2019). Persistence through tough times: fixed and shifting refuges in threatened species conservation. Biodiversity and Conservation 28, 1303–1330.
Persistence through tough times: fixed and shifting refuges in threatened species conservation.Crossref | GoogleScholarGoogle Scholar |

Ridout, M. S., and Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural Biological & Environmental Statistics 14, 322–337.
Estimating overlap of daily activity patterns from camera trap data.Crossref | GoogleScholarGoogle Scholar |

Risbey, D. A., Calver, M. C., Short, J., Bradley, J. S., and Wright, I. W. (2000). The impact of cats and foxes on the small vertebrate fauna of Heirisson Prong, Western Australia. II. A field experiment. Wildlife Research 27, 223–235.
The impact of cats and foxes on the small vertebrate fauna of Heirisson Prong, Western Australia. II. A field experiment.Crossref | GoogleScholarGoogle Scholar |

Somers, M. J., and Hayward, M. W. (2012). ‘Fencing for Conservation: Restriction of Evolutionary Potential or a Riposte to Threatening Processes?’ (Springer: Sydney, NSW, Australia.)

Stokeld, D., Frank, A. S. K., Hill, B., Choy, J. L., Mahney, T., Stevens, A., Young, S., Rangers, D., Rangers, W., and Gillespie, G. R. (2015). Multiple cameras required to reliably detect feral cats in northern Australian tropical savanna: an evaluation of sampling design when using camera traps. Wildlife Research 42, 642–649.
Multiple cameras required to reliably detect feral cats in northern Australian tropical savanna: an evaluation of sampling design when using camera traps.Crossref | GoogleScholarGoogle Scholar |

Vernes, K., and Jarman, P. (2014). Long-nosed potoroo (Potorous tridactylus) behaviour and handling times when foraging for buried truffles. Australian Mammalogy 36, 128–130.
Long-nosed potoroo (Potorous tridactylus) behaviour and handling times when foraging for buried truffles.Crossref | GoogleScholarGoogle Scholar |

VicFlora (2018). ‘Flora of Victoria.’ (Royal Botanic Gardens Victoria.) Available at https://vicflora.rbg.vic.gov.au [verified 30 October 2018].

West, R., Letnic, M., Blumstein, D. T., and Moseby, K. E. (2018). Predator exposure improves anti-predator responses in a threatened mammal. Journal of Applied Ecology 55, 147–156.
Predator exposure improves anti-predator responses in a threatened mammal.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences of the United States of America 112, 4531–4540.
Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar |

Woolley, L., Geyle, H. M., Murphy, B. P., Legge, S. M., Palmer, R., Dickman, C. R., Augusteyn, J., Comer, S., Doherty, T. S., Eager, C., Edwards, G., Harley, D. K. P., Leiper, I., McDonald, P. J., McGregor, H. W., Moseby, K. E., Myers, C., Read, J. L., Riley, J., Stokeld, D., Turpin, J. M., and Woinarski, J. C. Z. (2019). Introduced cats Felis catus eating a continental fauna: inventory and traits of Australian mammal species killed. Mammal Review 49, 354–368.
Introduced cats Felis catus eating a continental fauna: inventory and traits of Australian mammal species killed.Crossref | GoogleScholarGoogle Scholar |

Ziembicki, M. R., Woinarski, J. C. Z., Webb, J. K., Vanderduys, E., Tuft, K., Smith, J., Ritchie, E. G., Reardon, T. B., Radford, I. J., Preece, N., Perry, J., Murphy, B. P., McGregor, H., Legge, S., Leahy, L., Lawes, M. J., Kanowski, J., Johnson, C. N., James, A., Griffiths, A. D., Gillespie, G., Frank, A. S. K., Fisher, A., and Burbidge, A. A. (2015). Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia. Therya 6, 169–226.
Stemming the tide: progress towards resolving the causes of decline and implementing management responses for the disappearing mammal fauna of northern Australia.Crossref | GoogleScholarGoogle Scholar |