Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Introduced cats eating a continental fauna: invertebrate consumption by feral cats (Felis catus) in Australia

Leigh-Ann Woolley https://orcid.org/0000-0002-5295-8734 A J K , Brett P. Murphy A , Hayley M. Geyle https://orcid.org/0000-0001-9282-8953 A , Sarah M. Legge https://orcid.org/0000-0001-6968-2781 B C , Russell A. Palmer D , Chris R. Dickman E , Tim S. Doherty F , Glenn P. Edwards https://orcid.org/0000-0002-7340-7624 G , Joanna Riley H , Jeff M. Turpin I and John C. Z. Woinarski https://orcid.org/0000-0002-1712-9500 A
+ Author Affiliations
- Author Affiliations

A NESP Threatened Species Recovery Hub, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia.

B NESP Threatened Species Recovery Hub, Centre for Biodiversity and Conservation Science, University of Queensland, St Lucia, Qld 4072, Australia.

C Fenner School of Environment and Society, The Australian National University, Canberra, ACT 2602, Australia.

D Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

E NESP Threatened Species Recovery Hub, Desert Ecology Research Group, School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia.

F Centre for Integrative Ecology, School of Life and Environmental Sciences (Burwood Campus), Deakin University, Geelong, Vic. 3216, Australia.

G Department of Environment and Natural Resources, Alice Springs, NT 0871, Australia.

H School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom.

I Department of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia.

J Present address: WWF-Australia, 3 Broome Lotteries House, Cable Beach Road E, Broome, WA 6725, Australia.

K Corresponding author. Email: lawoolley15@gmail.com

Wildlife Research 47(8) 610-623 https://doi.org/10.1071/WR19197
Submitted: 15 October 2019  Accepted: 10 January 2020   Published: 16 June 2020

Abstract

Context: Recent global concern over invertebrate declines has drawn attention to the causes and consequences of this loss of biodiversity. Feral cats, Felis catus, pose a major threat to many vertebrate species in Australia, but their effect on invertebrates has not previously been assessed.

Aims: The objectives of our study were to (1) assess the frequency of occurrence (FOO) of invertebrates in feral cat diets across Australia and the environmental and geographic factors associated with this variation, (2) estimate the number of invertebrates consumed by feral cats annually and the spatial variation of this consumption, and (3) interpret the conservation implications of these results.

Methods: From 87 Australian cat-diet studies, we modelled the factors associated with variation in invertebrate FOO in feral cat-diet samples. We used these modelled relationships to predict the number of invertebrates consumed by feral cats in largely natural and highly modified environments.

Key results: In largely natural environments, the mean invertebrate FOO in feral cat dietary samples was 39% (95% CI: 31–43.5%), with Orthoptera being the most frequently recorded order, at 30.3% (95% CI: 21.2–38.3%). The highest invertebrate FOO occurred in lower-rainfall areas with a lower mean annual temperature, and in areas of greater tree cover. Mean annual invertebrate consumption by feral cats in largely natural environments was estimated to be 769 million individuals (95% CI: 422–1763 million) and in modified environments (with mean FOO of 27.8%) 317 million invertebrates year−1, giving a total estimate of 1086 million invertebrates year−1 consumed by feral cats across the continent.

Conclusions: The number of invertebrates consumed by feral cats in Australia is greater than estimates for vertebrate taxa, although the biomass (and, hence, importance for cat diet) of invertebrates taken would be appreciably less. The impact of predation by cats on invertebrates is difficult to assess because of the lack of invertebrate population and distribution estimates, but cats may pose a threat to some large-bodied narrowly restricted invertebrate species.

Implications: Further empirical studies of local and continental invertebrate diversity, distribution and population trends are required to adequately contextualise the conservation threat posed by feral cats to invertebrates across Australia.

Additional keywords: arthropods, diet, insects, invasive predator, predation.


References

Abbott, I. (2008). The spread of the cat, Felis catus, in Australia: re‐examination of the current conceptual model with additional information. Conservation Science Western Australia 7, 1–17.

Andersen, A. N., Hoffmann, B. D., and Oberprieler, S. (2018). Diversity and biogeography of a species-rich ant fauna of the Australian seasonal tropics. Insect Science 25, 519–526.
Diversity and biogeography of a species-rich ant fauna of the Australian seasonal tropics.Crossref | GoogleScholarGoogle Scholar | 27629082PubMed |

Animal Medicines Australia (2019). ‘Pets in Australia: a National Survey of Pets and People.’ (Animal Medicines Australia: Canberra, ACT, Australia.)

Australian Bureau of Meteorology (2019a). ‘Average Annual and Monthly Maximum, Minimum and Mean Temperature.’ Available at http://www.bom.gov.au/jsp/ncc/climate_averages/temperature/index.jsp [verified 29 May 2020].

Australian Bureau of Meteorology (2019b). ‘Average Annual, Seasonal and Monthly Rainfall.’ Available at http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp [verified 29 May 2020].

Barton, K. (2019). ‘MuMIn: Multi-Model Inference. R Package Version 1.43.6.’ Available at https://CRAN.R-project.org/package=MuMIn [verified 29 May 2020].

Beh, J. C. L. (1995). The winter ecology of the feral cat, Felis catus (Linnaeus 1758), at Wedge Island, Tasmania. B.Sc.(Hons) Thesis, University of Tasmania, Hobart, Tas., Australia.

Benton, T. G., Bryant, D. M., Cole, L., and Crick, H. Q. P. (2002). Linking agricultural practice to insect and bird populations: a historical study over three decades. Journal of Applied Ecology 39, 673–687.
Linking agricultural practice to insect and bird populations: a historical study over three decades.Crossref | GoogleScholarGoogle Scholar |

Biró, Z., Lanszki, J., Szemethy, L., Heltai, M., and Randi, E. (2005). Feeding habits of feral domestic cats (Felis catus), wild cats (Felis silvestris) and their hybrids: trophic niche overlap among cat groups in Hungary. Journal of Zoology 266, 187–196.
Feeding habits of feral domestic cats (Felis catus), wild cats (Felis silvestris) and their hybrids: trophic niche overlap among cat groups in Hungary.Crossref | GoogleScholarGoogle Scholar |

Blancher, P. (2013). Estimated number of birds killed by house cats (Felis catus) in Canada. Avian Conservation & Ecology 8, 3.
Estimated number of birds killed by house cats (Felis catus) in Canada.Crossref | GoogleScholarGoogle Scholar |

Bonnaud, E., Medina, F. M., Vidal, E., Nogales, M., Tershy, B., Zavaleta, E., Donlan, C. J., Keitt, B., Le Corre, M., and Horwath, S. V. (2011). The diet of feral cats on islands: a review and a call for more studies. Biological Invasions 13, 581–603.
The diet of feral cats on islands: a review and a call for more studies.Crossref | GoogleScholarGoogle Scholar |

Braby, M. F. (2018). Threatened species conservation of invertebrates in Australia: an overview. Austral Entomology 57, 173–181.
Threatened species conservation of invertebrates in Australia: an overview.Crossref | GoogleScholarGoogle Scholar |

Braby, M. F. (2019). Are insects and other invertebrates in decline in Australia? Austral Entomology 58, 471–477.
Are insects and other invertebrates in decline in Australia?Crossref | GoogleScholarGoogle Scholar |

Burbidge, A. A., and McKenzie, N. L. (1989). Patterns in the modern decline of western Australia’s vertebrate fauna: causes and conservation implications. Biological Conservation 50, 143–198.
Patterns in the modern decline of western Australia’s vertebrate fauna: causes and conservation implications.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2003). ‘Model Selection and Multimodel Inference: a Practical Information-theoretic Approach.’ (Springer: New York, NY, Australia.)

Campos, C. B., Esteves, C. F., Ferraz, K. M. P. M. B., Crawshaw, P. G., and Verdade, L. M. (2007). Diet of free-ranging cats and dogs in a suburban and rural environment, south-eastern Brazil. Journal of Zoology 273, 14–20.
Diet of free-ranging cats and dogs in a suburban and rural environment, south-eastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Cardoso, P., Erwin, T. L., Borges, P. A. V., and New, T. R. (2011). The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation 144, 2647–2655.
The seven impediments in invertebrate conservation and how to overcome them.Crossref | GoogleScholarGoogle Scholar |

Catling, P. C. (1988). Similarities and contrasts in the diets of foxes, Vulpes vulpes, and cats, Felis catus, relative to fluctuating prey populations and drought. Wildlife Research 15, 307–317.
Similarities and contrasts in the diets of foxes, Vulpes vulpes, and cats, Felis catus, relative to fluctuating prey populations and drought.Crossref | GoogleScholarGoogle Scholar |

Chapman, A. D. (2009) ‘Numbers of Living Species in Australia and the World.’ (Australian Biological Resources Study: Canberra, ACT, Australia.)

Cranston, P. S. (2010). Insect biodiversity and conservation in Australasia. Annual Review of Entomology 55, 55–75.
Insect biodiversity and conservation in Australasia.Crossref | GoogleScholarGoogle Scholar | 19961323PubMed |

Cresswell, I. D., and Murphy, H. (2016). Biodiversity: terrestrial plant and animal species: invertebrates. In ‘Australia State of the Environment 2016’. (Australian Government Department of the Environment and Energy: Canberra, ACT, Australia.) Available at https://soe.environment.gov.au/theme/biodiversity [verified 29 May 2020].

Dickman, C. R., and Huang, C. (1988). The reliability of fecal analysis as a method for determining the diet of insectivorous mammals. Journal of Mammalogy 69, 108–113.
The reliability of fecal analysis as a method for determining the diet of insectivorous mammals.Crossref | GoogleScholarGoogle Scholar |

Dickman, C. R., and Newsome, T. M. (2015). Individual hunting behaviour and prey specialisation in the house cat Felis catus: implications for conservation and management. Applied Animal Behaviour Science 173, 76–87.
Individual hunting behaviour and prey specialisation in the house cat Felis catus: implications for conservation and management.Crossref | GoogleScholarGoogle Scholar |

Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., and Collen, B. (2014). Defaunation in the Anthropocene. Science 345, 401–406.
Defaunation in the Anthropocene.Crossref | GoogleScholarGoogle Scholar | 25061202PubMed |

Doherty, T. S. (2015). Dietary overlap between sympatric dingoes and feral cats at a semiarid rangeland site in Western Australia. Australian Mammalogy 37, 219–224.
Dietary overlap between sympatric dingoes and feral cats at a semiarid rangeland site in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Doherty, T. S., Davis, R. A., van Etten, E. J. B., Algar, D., Collier, N., Dickman, C. R., Edwards, G., Masters, P., Palmer, R., Robinson, S., and McGeoch, M. (2015). A continental-scale analysis of feral cat diet in Australia. Journal of Biogeography 42, 964–975.
A continental-scale analysis of feral cat diet in Australia.Crossref | GoogleScholarGoogle Scholar |

Doherty, T. S., Davis, N. E., Dickman, C. R., Forsyth, D. M., Letnic, M., Nimmo, D. G., Palmer, R., Ritchie, E. G., Benshemesh, J., Edwards, G., Lawrence, J., Lumsden, L., Pascoe, C., Sharp, A., Stokeld, D., Myers, C., Story, G., Story, P., Triggs, B., Venosta, M., Wysong, M., and Newsome, T. M. (2019). Continental patterns in the diet of a top predator: Australia’s dingo. Mammal Review 49, 31–44.
Continental patterns in the diet of a top predator: Australia’s dingo.Crossref | GoogleScholarGoogle Scholar |

Eisenhauer, N. (2018). Impacts of free-ranging cats on invertebrates. Frontiers in Ecology and the Environment 16, 262–263.
Impacts of free-ranging cats on invertebrates.Crossref | GoogleScholarGoogle Scholar |

Eisenhauer, N., Bonn, A., and Guerra, C. A. (2019). Recognizing the quiet extinction of invertebrates. Nature Communications 10, 50.
Recognizing the quiet extinction of invertebrates.Crossref | GoogleScholarGoogle Scholar | 30604746PubMed |

Fonseca, C. R. (2009). The silent mass extinction of insect herbivores in biodiversity hotspots. Conservation Biology 23, 1507–1515.
The silent mass extinction of insect herbivores in biodiversity hotspots.Crossref | GoogleScholarGoogle Scholar | 19775277PubMed |

Gibb, H., Grossman, B. F., Dickman, C. R., Decker, O., and Wardle, G. M. (2019). Long-term responses of desert ant assemblages to climate. Journal of Animal Ecology 88, 1549–1563.
Long-term responses of desert ant assemblages to climate.Crossref | GoogleScholarGoogle Scholar | 31310340PubMed |

Gillies, C. (2001). Advances in New Zealand mammalogy 1990–2000: house cat. Journal of the Royal Society of New Zealand 31, 205–218.
Advances in New Zealand mammalogy 1990–2000: house cat.Crossref | GoogleScholarGoogle Scholar |

Glen, A. S., Pennay, M., Dickman, C. R., Wintle, B. A., and Firestone, K. B. (2011). Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia. Austral Ecology 36, 290–296.
Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Green, K. (2003). Altitudinal and temporal differences in the food of foxes (Vulpes vulpes) at alpine and subalpine altitudes in the Snowy Mountains. Wildlife Research 30, 245–253.
Altitudinal and temporal differences in the food of foxes (Vulpes vulpes) at alpine and subalpine altitudes in the Snowy Mountains.Crossref | GoogleScholarGoogle Scholar |

Green, K., and Osborne, W. S. (1981). The diet of foxes, Vulpes vulpes (L.), in relation to abundance of prey above the winter snowline in New South Wales. Wildlife Research 8, 349–360.
The diet of foxes, Vulpes vulpes (L.), in relation to abundance of prey above the winter snowline in New South Wales.Crossref | GoogleScholarGoogle Scholar |

Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., and de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809.
More than 75 percent decline over 27 years in total flying insect biomass in protected areas.Crossref | GoogleScholarGoogle Scholar | 29045418PubMed |

Hansen, M. C., DeFries, R. S., Townshend, J. R. G., Carroll, M., Dimiceli, C., and Sohlberg, R. A. (2003). Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm. Earth Interactions 7, 1–15.
Global percent tree cover at a spatial resolution of 500 meters: first results of the MODIS vegetation continuous fields algorithm.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Rix, M. G., Framenau, V. W., Hamilton, Z. R., Johnson, M. S., Teale, R. J., Humphreys, G., and Humphreys, W. F. (2011). Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes. Invertebrate Systematics 25, 1–10.
Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes.Crossref | GoogleScholarGoogle Scholar |

Hayde, K. A. (1992). Ecology of the feral cat Felis catus on Great Dog Island. B.Sc.(Hons) Thesis, University of Tasmania, Hobart, Tas., Australia.

Hernandez, S. M., Loyd, K. A. T., Newton, A. N., Carswell, B. L., and Abernathy, K. J. (2018). The use of point-of-view cameras (Kittycams) to quantify predation by colony cats (Felis catus) on wildlife. Wildlife Research 45, 357–365.
The use of point-of-view cameras (Kittycams) to quantify predation by colony cats (Felis catus) on wildlife.Crossref | GoogleScholarGoogle Scholar |

Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E. (2008). ‘Hole-filled SRTM for the Globe, Version 4.’ Available at http://srtm.csi.cgiar.org/ [verified 29 May 2020].

Jonas, J. L., Wolesensky, W., and Joern, A. (2015). Weather affects grasshopper population dynamics in continental grassland over annual and decadal periods. Rangeland Ecology and Management 68, 29–39.
Weather affects grasshopper population dynamics in continental grassland over annual and decadal periods.Crossref | GoogleScholarGoogle Scholar |

Jones, E., and Coman, B. J. (1981). Ecology of the feral cat, Felis catus (L.), in south-eastern Australia I. Diet. Australian Wildlife Research 8, 537–547.
Ecology of the feral cat, Felis catus (L.), in south-eastern Australia I. Diet.Crossref | GoogleScholarGoogle Scholar |

Jones, H. P., Holmes, N. D., Butchart, S. H. M., Tershy, B. R., Kappes, P. J., Corkery, I., Aguirre-Muñoz, A., Armstrong, D. P., Bonnaud, E., Burbidge, A. A., Campbell, K., Courchamp, F., Cowan, P. E., Cuthbert, R. J., Ebbert, S., Genovesi, P., Howald, G. R., Keitt, B. S., Kress, S. W., Miskelly, C. M., Oppel, S., Poncet, S., Rauzon, M. J., Rocamora, G., Russell, J. C., Samaniego-Herrera, A., Seddon, P. J., Spatz, D. R., Towns, D. R., and Croll, D. A. (2016). Invasive mammal eradication on islands results in substantial conservation gains. Proceedings of the National Academy of Sciences of the United States of America 113, 4033–4038.
Invasive mammal eradication on islands results in substantial conservation gains.Crossref | GoogleScholarGoogle Scholar | 27001852PubMed |

Kwok, A. B. C., Wardle, G. M., Greenville, A. C., and Dickman, C. R. (2016). Long-term patterns of invertebrate abundance and relationships to environmental factors in arid Australia. Austral Ecology 41, 480–491.
Long-term patterns of invertebrate abundance and relationships to environmental factors in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Legge, S., Murphy, B. P., McGregor, H., Woinarski, J. C. Z., Augusteyn, J., Ballard, G., Baseler, M., Buckmaster, T., Dickman, C. R., Doherty, T., Edwards, G., Eyre, T., Fancourt, B., Ferguson, D., Forsyth, D. M., Geary, W. L., Gentle, M., Gillespie, G., Greenwood, L., Hohnen, R., Hume, S., Johnson, C. N., Maxwell, N., McDonald, P., Morris, K., Moseby, K., Newsome, T., Nimmo, D., Paltridge, R., Ramsey, D., Read, J., Rendall, A., Rich, M., Ritchie, E., Rowland, J., Short, J., Stokeld, D., Sutherland, D. R., Wayne, A. F., Woodford, L., and Zewe, F. (2017). Enumerating a continental-scale threat: how many feral cats are in Australia? Biological Conservation 206, 293–303.
Enumerating a continental-scale threat: how many feral cats are in Australia?Crossref | GoogleScholarGoogle Scholar |

Lister, B. C., and Garcia, A. (2018). Climate-driven declines in arthropod abundance restructure a rainforest food web. Proceedings of the National Academy of Sciences of the United States of America 115, E10397–E10406.
Climate-driven declines in arthropod abundance restructure a rainforest food web.Crossref | GoogleScholarGoogle Scholar | 30322922PubMed |

Loss, S. R., and Marra, P. P. (2017). Population impacts of free-ranging domestic cats on mainland vertebrates. Frontiers in Ecology and the Environment 15, 502–509.
Population impacts of free-ranging domestic cats on mainland vertebrates.Crossref | GoogleScholarGoogle Scholar |

Loss, S. R., Will, T., and Marra, P. P. (2013). The impact of free-ranging domestic cats on wildlife of the United States. Nature Communications 4, 1396.
The impact of free-ranging domestic cats on wildlife of the United States.Crossref | GoogleScholarGoogle Scholar | 23360987PubMed |

Martin, G. R., Twigg, L. E., and Robinson, D. J. (1996). Comparison of the diet of feral cats from rural and pastoral Western Australia. Wildlife Research 23, 475–484.
Comparison of the diet of feral cats from rural and pastoral Western Australia.Crossref | GoogleScholarGoogle Scholar |

Mason, L. D., Wardell-Johnson, G., Luxton, S. J., and Bateman, P. W. (2018). Predators show seasonal predilections for model clay spiders in an urban environment. Scientific Reports 8, 12444.
Predators show seasonal predilections for model clay spiders in an urban environment.Crossref | GoogleScholarGoogle Scholar | 30127351PubMed |

Mason, L., Bateman, P. W., Miller, B. P., and Wardell-Johnson, G. W. (2019). Ashes to ashes: intense fires extinguish populations of urban short-range endemics. Austral Ecology 44, 514–522.
Ashes to ashes: intense fires extinguish populations of urban short-range endemics.Crossref | GoogleScholarGoogle Scholar |

Medina, F. M., and García, R. (2007). Predation of insects by feral cats (Felis silvestris catus L., 1758) on an oceanic island (La Palma, Canary Island). Journal of Insect Conservation 11, 203–207.
Predation of insects by feral cats (Felis silvestris catus L., 1758) on an oceanic island (La Palma, Canary Island).Crossref | GoogleScholarGoogle Scholar |

Mifsud, G., and Woolley, P. A. (2012). Predation of the Julia Creek dunnart (Sminthopsis douglasi) and other native fauna by cats and foxes on Mitchell grass downs in Queensland. Australian Mammalogy 34, 188–195.
Predation of the Julia Creek dunnart (Sminthopsis douglasi) and other native fauna by cats and foxes on Mitchell grass downs in Queensland.Crossref | GoogleScholarGoogle Scholar |

Murphy, B. P., Woolley, L.-A., Geyle, H. M., Legge, S. M., Palmer, R., Dickman, C. R., Augusteyn, J., Brown, S. C., Comer, S., Doherty, T. S., Eager, C., Edwards, G., Fordham, D. A., Harley, D., McDonald, P. J., McGregor, H., Moseby, K. E., Myers, C., Read, J., Riley, J., Stokeld, D., Trewella, G. J., Turpin, J. M., and Woinarski, J. C. Z. (2019). Introduced cats (Felis catus) eating a continental fauna: the number of mammals killed in Australia. Biological Conservation 237, 28–40.
Introduced cats (Felis catus) eating a continental fauna: the number of mammals killed in Australia.Crossref | GoogleScholarGoogle Scholar |

O’Connell, G. J. (2010). The diet of feral cats (Felis catus) in the Fitzgerald River National Park, south-western Australia. B.Sc.(Hons) Thesis, University of Western Australia, Perth, WA, Australia.

Palmas, P., Jourdan, H., Rigault, F., Debar, L., De Meringo, H., Bourguet, E., Mathivet, M., Lee, M., Adjouhgniope, R., Papillon, Y., Bonnaud, E., and Vidal, E. (2017). Feral cats threaten the outstanding endemic fauna of the New Caledonia biodiversity hotspot. Biological Conservation 214, 250–259.
Feral cats threaten the outstanding endemic fauna of the New Caledonia biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

Palmer, R. A. (1995). Diet of the red fox (Vulpes vulpes) in south-western Queensland. The Rangeland Journal 17, 99–108.
Diet of the red fox (Vulpes vulpes) in south-western Queensland.Crossref | GoogleScholarGoogle Scholar |

Paltridge, R. (2002). The diets of cats, foxes and dingoes in relation to prey availability in the Tanami Desert, Northern Territory. Wildlife Research 29, 389–403.
The diets of cats, foxes and dingoes in relation to prey availability in the Tanami Desert, Northern Territory.Crossref | GoogleScholarGoogle Scholar |

Paltridge, R., Gibson, D., and Edwards, G. (1997). Diet of the feral cat (Felis catus) in central Australia. Wildlife Research 24, 67–76.
Diet of the feral cat (Felis catus) in central Australia.Crossref | GoogleScholarGoogle Scholar |

Pavey, C. R., Eldridge, S. R., and Heywood, M. (2008). Population dynamics and prey selection of native and introduced predators during a rodent outbreak in arid Australia. Journal of Mammalogy 89, 674–683.
Population dynamics and prey selection of native and introduced predators during a rodent outbreak in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Pearre, S., and Maass, R. (1998). Trends in the prey size-based trophic niches of feral and house cats Felis catus L. Mammal Review 28, 125–139.
Trends in the prey size-based trophic niches of feral and house cats Felis catus L.Crossref | GoogleScholarGoogle Scholar |

Pickrell, J. (2019). Rat eradication launched on populated island. Science 364, 915–916.
Rat eradication launched on populated island.Crossref | GoogleScholarGoogle Scholar | 31171670PubMed |

Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., and Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution 25, 345–353.
Global pollinator declines: trends, impacts and drivers.Crossref | GoogleScholarGoogle Scholar |

Priddel, D., Carlile, N., Humphrey, M., Fellenberg, S., and Hiscox, D. (2003). Rediscovery of the ‘extinct’ Lord Howe Island stick-insect (Dryococelus australis (Montrouzier)) (Phasmatodea) and recommendations for its conservation. Biodiversity and Conservation 12, 1391–1403.
Rediscovery of the ‘extinct’ Lord Howe Island stick-insect (Dryococelus australis (Montrouzier)) (Phasmatodea) and recommendations for its conservation.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2019). ‘R: a Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria.)

Read, J. L., Dagg, E., and Moseby, K. E. (2019). Prey selectivity by feral cats at central Australian rock-wallaby colonies. Australian Mammalogy 41, 132–141.
Prey selectivity by feral cats at central Australian rock-wallaby colonies.Crossref | GoogleScholarGoogle Scholar |

Rees, M. W., Pascoe, J. H., Wintle, B. A., Le Pla, M., Birnbaum, E. K., and Hradsky, B. A. (2019). Unexpectedly high densities of feral cats in a rugged temperate forest. Biological Conservation 239, 108287.
Unexpectedly high densities of feral cats in a rugged temperate forest.Crossref | GoogleScholarGoogle Scholar |

Régnier, C., Bouchet, P., Hayes, K. A., Yeung, N. W., Christensen, C. C., Chung, D. J. D., Fontaine, B., and Cowie, R. H. (2015). Extinction in a hyperdiverse endemic Hawaiian land snail family and implications for the underestimation of invertebrate extinction. Conservation Biology 29, 1715–1723.
Extinction in a hyperdiverse endemic Hawaiian land snail family and implications for the underestimation of invertebrate extinction.Crossref | GoogleScholarGoogle Scholar | 26234768PubMed |

Rentz, D. C. F. (1996). ‘Grasshopper Country: the Abundant Orthopteroid Insects of Australia.’ (University of New South Wales Press: Sydney, NSW, Australia.)

Rix, M. G., Huey, J. A., Main, B. Y., Waldock, J. M., Harrison, S. E., Comer, S., Austin, A. D., and Harvey, M. S. (2017). Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. Austral Entomology 56, 14–22.
Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia.Crossref | GoogleScholarGoogle Scholar |

Sánchez-Bayo, F., and Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: a review of its drivers. Biological Conservation 232, 8–27.
Worldwide decline of the entomofauna: a review of its drivers.Crossref | GoogleScholarGoogle Scholar |

Sands, D. P. A. (2018). Important issues facing insect conservation in Australia: now and into the future. Austral Entomology 57, 150–172.
Important issues facing insect conservation in Australia: now and into the future.Crossref | GoogleScholarGoogle Scholar |

Schori, J. C., Maloney, R. F., Steeves, T. E., and Murray, T. J. (2019). Evidence that reducing mammalian predators is beneficial for threatened and declining New Zealand grasshoppers. New Zealand Journal of Zoology 46, 149–164.
Evidence that reducing mammalian predators is beneficial for threatened and declining New Zealand grasshoppers.Crossref | GoogleScholarGoogle Scholar |

Shionosaki, K., Yamada, F., Ishikawa, T., and Shibata, S. (2015). Feral cat diet and predation on endangered endemic mammals on a biodiversity hot spot (Amami–Ohshima Island, Japan). Wildlife Research 42, 343–352.
Feral cat diet and predation on endangered endemic mammals on a biodiversity hot spot (Amami–Ohshima Island, Japan).Crossref | GoogleScholarGoogle Scholar |

Spencer, E. E., Newsome, T. M., and Dickman, C. R. (2017). Prey selection and dietary flexibility of three species of mammalian predator during an irruption of non-cyclic prey. Royal Society Open Science 4, 170 317.
Prey selection and dietary flexibility of three species of mammalian predator during an irruption of non-cyclic prey.Crossref | GoogleScholarGoogle Scholar | 28989739PubMed |

St Clair, J. J. H. (2011). The impacts of invasive rodents on island invertebrates. Biological Conservation 144, 68–81.
The impacts of invasive rodents on island invertebrates.Crossref | GoogleScholarGoogle Scholar |

Taggart, P. L., Fancourt, B. A., Bengsen, A. J., Peacock, D. E., Hodgens, P., Red, J. L., McAllister, M. M., and Caraguel, C. G. B. (2019). Evidence of significantly higher island feral cat abundance compared with the adjacent mainland. Wildlife Research 46, 378–385.
Evidence of significantly higher island feral cat abundance compared with the adjacent mainland.Crossref | GoogleScholarGoogle Scholar |

Tatler, J., Prowse, T. A., Roshier, D. A., Allen, B. L., and Cassey, P. (2019). Resource pulses affect prey selection and reduce dietary diversity of dingoes in arid Australia. Mammal Review 49, 263–275.
Resource pulses affect prey selection and reduce dietary diversity of dingoes in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Taylor, G. S., Braby, M. F., Moir, M. L., Harvey, M. S., Sands, D. P. A., New, T. R., Kitching, R. L., McQuillan, P. B., Hogendoorn, K., Glatz, R. V., Andren, M., Cook, J. M., Henry, S. C., Valenzuela, I., and Weinstein, P. (2018). Strategic national approach for improving the conservation management of insects and allied invertebrates in Australia. Austral Entomology 57, 124–149.
Strategic national approach for improving the conservation management of insects and allied invertebrates in Australia.Crossref | GoogleScholarGoogle Scholar |

Thomas, J. A. (2016). Butterfly communities under threat. Science 353, 216–218.
Butterfly communities under threat.Crossref | GoogleScholarGoogle Scholar | 27418487PubMed |

van Hengstum, T., Hooftman, D. A. P., Oostermeijer, J. G. B., and van Tienderen, P. H. (2014). Impact of plant invasions on local arthropod communities: a meta-analysis. Journal of Ecology 102, 4–11.
Impact of plant invasions on local arthropod communities: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Vogel, G. (2017). Where have all the insects gone? Science 356, 576–579.
Where have all the insects gone?Crossref | GoogleScholarGoogle Scholar | 28495712PubMed |

Watson, K. (2006). Aspects of the history, home range and diet of the feral cat (Felis catus) in the Perisher Range resort area of Kosciuszko National Park, New South Wales. M.Sc. Thesis, University of Sydney, Sydney, NSW, Australia.

Watts, C., Dopheide, A., Holdaway, R., Davis, C., Wood, J., Thornburrow, D., and Dickie, I. A. (2019). DNA metabarcoding as a tool for invertebrate community monitoring: a case study comparison with conventional techniques. Austral Entomology 58, 675–686.
DNA metabarcoding as a tool for invertebrate community monitoring: a case study comparison with conventional techniques.Crossref | GoogleScholarGoogle Scholar |

Wilson, E. O. (1987). The little things that run the world: the importance and conservation of invertebrates. Conservation Biology 1, 344–346.
The little things that run the world: the importance and conservation of invertebrates.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences of the United States of America 112, 4531–4540.
Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Murphy, B. P., Legge, S. M., Garnett, S. T., Lawes, M. J., Comer, S., Dickman, C. R., Doherty, T. S., Edwards, G., Nankivell, A., Paton, D., Palmer, R., and Woolley, L. A. (2017a). How many birds are killed by cats in Australia? Biological Conservation 214, 76–87.
How many birds are killed by cats in Australia?Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Woolley, L. A., Garnett, S. T., Legge, S. M., Murphy, B. P., Lawes, M. J., Comer, S., Dickman, C. R., Doherty, T. S., Edwards, G., Nankivell, A., Palmer, R., and Paton, D. (2017b). Compilation and traits of Australian bird species killed by cats. Biological Conservation 216, 1–9.
Compilation and traits of Australian bird species killed by cats.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Murphy, B. P., Palmer, R., Legge, S. M., Dickman, C. R., Doherty, T. S., Edwards, G., Nankivell, A., Read, J. L., and Stokeld, D. (2018a). How many reptiles are killed by cats in Australia? Wildlife Research 45, 247–266.
How many reptiles are killed by cats in Australia?Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., South, S. L., Drummond, P., Johnston, G. R., and Nankivell, A. (2018b). The diet of the feral cat (Felis catus), red fox (Vulpes vulpes) and dog (Canis familiaris) over a three-year period at Witchelina Reserve, in arid South Australia. Australian Mammalogy 40, 204–213.
The diet of the feral cat (Felis catus), red fox (Vulpes vulpes) and dog (Canis familiaris) over a three-year period at Witchelina Reserve, in arid South Australia.Crossref | GoogleScholarGoogle Scholar |

Woods, M., McDonald, R., and Ris, S. (2003). Predation of wildlife by domestic cats Felis catus in Great Britain. Mammal Review 33, 174–188.
Predation of wildlife by domestic cats Felis catus in Great Britain.Crossref | GoogleScholarGoogle Scholar |

Woolley, L.-A., Geyle, H. M., Murphy, B. P., Legge, S. M., Palmer, R., Dickman, C. R., Augusteyn, J., Comer, S., Doherty, T. S., Eager, C., Edwards, G., Harley, D. K. P., Leiper, I., McDonald, P. J., McGregor, H. W., Moseby, K. E., Myers, C., Read, J. L., Riley, J., Stokeld, D., Turpin, J. M., and Woinarski, J. C. Z. (2019). Introduced cats Felis catus eating a continental fauna: inventory and traits of Australian mammal species killed. Mammal Review , .
Introduced cats Felis catus eating a continental fauna: inventory and traits of Australian mammal species killed.Crossref | GoogleScholarGoogle Scholar |

Yadav, S., Stow, A. J., Harris, R. M. B., and Dudaniec, R. Y. (2018). Morphological variation tracks environmental gradients in an agricultural pest, Phaulacridium vittatum (Orthoptera: Acrididae). Journal of Insect Science 18, 13.
Morphological variation tracks environmental gradients in an agricultural pest, Phaulacridium vittatum (Orthoptera: Acrididae).Crossref | GoogleScholarGoogle Scholar |

Yip, S. J. S., Rich, M.-A., and Dickman, C. R. (2015). Diet of the feral cat, Felis catus, in central Australian grassland habitats during population cycles of its principal prey. Mammal Research 60, 39–50.
Diet of the feral cat, Felis catus, in central Australian grassland habitats during population cycles of its principal prey.Crossref | GoogleScholarGoogle Scholar |