Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Assessing the status of a threatened island endemic, Ctenosaura oedirhina, on Roatán, Honduras

A. B. C. Goode https://orcid.org/0000-0001-6515-3954 A B E , S. A. Pasachnik C and T. L. Maple D
+ Author Affiliations
- Author Affiliations

A College of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.

B USDA-ARS Invasive Plant Research Laboratory, 3225 College Avenue, Davie, FL 33314, USA.

C Fort Worth Zoo, 1989 Colonial Parkway, Fort Worth, TX 76110, USA.

D Jacksonville Zoo, 370 Zoo Parkway, Jacksonville, FL 32218, USA.

E Corresponding author. Email: acampbellgoode@gmail.com

Wildlife Research 47(2) 137-145 https://doi.org/10.1071/WR18195
Submitted: 22 August 2017  Accepted: 23 September 2019   Published: 21 February 2020

Abstract

Context: Organisms living in small, isolated populations with very restricted ranges are at high risk of extirpation due to various direct and indirect forces than mainland populations. Roatán spiny-tailed iguanas (Ctenosaura oedirhina) are endemic to the 146-km2 island of Roatán, Honduras. Harvesting for consumption, fragmentation of habitat and predation by domestic animals threaten the existence of this lizard. This species is federally protected in Honduras; however, enforcement is rare. These iguanas are also listed as Endangered by the International Union for Conservation of Nature (IUCN) and are on Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). This species is geographically and genetically isolated into small subpopulations that are declining in density.

Aims: To estimate the population size of Roatán spiny-tailed iguanas (Ctenosaura oedirhina) on the island of Roatán, Honduras.

Methods: Distance sampling surveys have been used to monitor this species since 2012, and have been used to determine population density at five study sites. Estimates of density at those sites and across the island were used to calculate the population size of this species.

Key results: The present study elucidates that the high-density populations remaining are declining. The current population size is estimated to be 3759 (95% CI = 1406–12 616) individuals within the study sites, with 730 additional iguanas potentially outside of the study sites.

Conclusions: If the current level of decline continues, this species may become extirpated from some locations on Roatán, and go extinct in the wild. Although Honduras does have laws protecting this species and other wildlife, enforcement must be enhanced.

Implications: Lack of enforced protection for this species allows poaching for consumption to continue, which has been shown to alter its distribution and cause increased adult mortality. Local customs value the consumption of this species, creating a delicate management situation. Recommendations include strategies that mitigate the threat posed by consumption and increase enforcement of the current laws, while acknowledging cultural traditions.

Additional keywords: distance sampling, population density, Spiny-tailed Iguana.


References

Aiello, D. P. (2007). Coast to coral: evaluating terrestrial development’s relationship to coral ecosystem condition in Roatán, Honduras. Ph.D. Thesis, Ohio University, Columbus, OH.

Arneberg, P., Skorping, A., Grenfell, B., and Read, A. F. (1998). Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London. Series B, Biological Sciences 265, 1283–1289.
Host densities as determinants of abundance in parasite communities.Crossref | GoogleScholarGoogle Scholar |

Barton, N. H. (1996). Natural selection and random genetic drift as causes of evolution on islands. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 351, 785–795.
Natural selection and random genetic drift as causes of evolution on islands.Crossref | GoogleScholarGoogle Scholar | 8693020PubMed |

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001). ‘Introduction to Distance Sampling.’ (Oxford University Press: Oxford.)

Calenge, C. (2011). Home range estimation in R: the adehabitatHR package. (Office national de la classe et de la faune sauvage: Saint Benoist, France.)

Cotí, P., and Ariano-Sánchez, D. (2008). Ecology and traditional use of the Guatemalan black iguana (Ctenosaura palearis) in the dry forests of the Motagua Valley, Guatemala. Iguana 15, 142–149.

Crawford, D. J., and Stuessy, T. F. (1997). Plant speciation on oceanic islands. In ‘Evolution and Diversification of Land Plants’. (Eds K. Iwatsuki, and P. H. Raven.) pp. 249–267. (Springer: New York.)

de Queiroz, K. (1987). A new spiny-tailed iguana from Honduras, with comments on relationships within Ctenosaura (Squamata: Iguania). Copeia 1987, 892–902.
A new spiny-tailed iguana from Honduras, with comments on relationships within Ctenosaura (Squamata: Iguania).Crossref | GoogleScholarGoogle Scholar |

Fitch, H. S., and Henderson, R. W. (1977). Age and sex differences in the Ctenosaura (Ctenosaura similis). Contributions in Biology and Geology, Milwaukee Public Museum 11, 1–11.

Gilpin, M. E., and Soulé, M. E. (1986). Minimum viable populations: processes of extinction. In ‘Conservation Biology: the Science of Scarcity and Diversity’. (Ed. M. E. Soulé.) pp. 19–34. (Sinauer Associates: Sunderland, MA.)

Girondot, M., Tucker, A. D., Rivalan, P., Godfrey, M. H., and Chevalier, J. (2002). Density-dependent nest destruction and population fluctuations of Guianan leatherback turtles. Animal Conservation 5, 75–84.
Density-dependent nest destruction and population fluctuations of Guianan leatherback turtles.Crossref | GoogleScholarGoogle Scholar |

Goode, A. B. C., Pasachnik, S. A., and Maple, T. L. (2016). Habitat utilization of Roatán spiny-tailed iguanas (Ctenosaura oedirhina) and its implications for conservation. Herpetological Conservation and Biology 11, 79–89.

Grignolio, S., Merli, E., Bongi, P., Ciuti, S., and Apollonio, M. (2011). Effects of hunting with hounds on a non-target species living on the edge of a protected area. Biological Conservation 144, 641–649.
Effects of hunting with hounds on a non-target species living on the edge of a protected area.Crossref | GoogleScholarGoogle Scholar |

Groombridge, B. (1992). ‘Global Biodiversity: Status of the Earth’s Living Resources.’ (Chapman & Hall: London.)

Imong, I., Robbins, M. M., Mundry, R., Bergl, R., and Kuhl, H. S. (2014). Distinguishing ecological constraints from human activity in species range fragmentation: the case of Cross River gorillas. Animal Conservation 17, 323–331.
Distinguishing ecological constraints from human activity in species range fragmentation: the case of Cross River gorillas.Crossref | GoogleScholarGoogle Scholar |

International Union for the Conservation of Nature (IUCN) (2019). ‘IUCN Red List 2019–1.’ (IUCN: Gland, Switzerland.)

Iverson, J. B. (1978). The impact of feral cats and dogs on populations of the West Indian rock iguana, Cyclura carinata. Biological Conservation 14, 63–73.
The impact of feral cats and dogs on populations of the West Indian rock iguana, Cyclura carinata.Crossref | GoogleScholarGoogle Scholar |

Iverson, J. B., Converse, S. J., Smith, G. R., and Valiulis, J. M. (2006). Long-term trends in the demography of the Allen Cays rock iguana (Cyclura cychlura inornata): human disturbance and density-dependent effects. Biological Conservation 132, 300–310.
Long-term trends in the demography of the Allen Cays rock iguana (Cyclura cychlura inornata): human disturbance and density-dependent effects.Crossref | GoogleScholarGoogle Scholar |

Jones, A. R., Bull, C. M., Brook, B. W., Wells, K., Pollock, K. H., and Fordham, D. A. (2016). Tick exposure and extreme climate events impact survival and threaten the persistence of a long‐lived lizard. Journal of Animal Ecology 85, 598–610.
Tick exposure and extreme climate events impact survival and threaten the persistence of a long‐lived lizard.Crossref | GoogleScholarGoogle Scholar | 26559641PubMed |

Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., Mutke, J., and Barthlott, W. (2009). A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences of the United States of America 106, 9322–9327.
A global assessment of endemism and species richness across island and mainland regions.Crossref | GoogleScholarGoogle Scholar | 19470638PubMed |

Knapp, C. R., and Abarca, J. G. (2009). Effects of radio transmitter burdening on locomotor ability and survival of iguana hatchlings. Herpetologica 65, 363–372.
Effects of radio transmitter burdening on locomotor ability and survival of iguana hatchlings.Crossref | GoogleScholarGoogle Scholar |

Knapp, C. R., Hines, K. N., Zachariah, T. T., Perez-Heydrich, C., Iverson, J. B., Buckner, S. D., Halach, S. C., Lattin, C. R., and Romero, L. M. (2013). Physiological effects of tourism and associated food provisioning in an endangered iguana. Conservation Physiology 1, cot032.
Physiological effects of tourism and associated food provisioning in an endangered iguana.Crossref | GoogleScholarGoogle Scholar | 27293616PubMed |

Kutnik, G. (2014). We accidentally ate the most endangered species in Honduras. Huffington Post 29 December 2014. Available at https://www.huffpost.com/entry/we-accidentally-ate-the-m_b_6383798 [verified 20 December 2019].

Kwiatkowski, M. A., and Sullivan, B. K. (2002). Mating system structure and population density in a polygynous lizard, Sauromalus obesus (= ater). Behavioral Ecology 13, 201–208.
Mating system structure and population density in a polygynous lizard, Sauromalus obesus (= ater).Crossref | GoogleScholarGoogle Scholar |

Langkilde, T., and Shine, R. (2006). How much stress do researchers inflict on their study animals? A case study using a scincid lizard, Eulamprus heatwolei. The Journal of Experimental Biology 209, 1035–1043.
How much stress do researchers inflict on their study animals? A case study using a scincid lizard, Eulamprus heatwolei.Crossref | GoogleScholarGoogle Scholar | 16513929PubMed |

McCranie, J. R. (2018). The lizards, crocodiles, and turtles of Honduras. Systematics, distribution, and conservation. Bulletin of the Museum of Comparative Zoology 15, 1–129.
The lizards, crocodiles, and turtles of Honduras. Systematics, distribution, and conservation.Crossref | GoogleScholarGoogle Scholar |

Medina, F. M., Bonnaud, E., Vidal, E., Tershy, B. R., Zavaleta, E. S., Josh Donlan, C., Keitt, B. S., Le Corre, M., Horwath, S. V., and Nogales, M. (2011). A global review of the impacts of invasive cats on island endangered vertebrates. Global Change Biology 17, 3503–3510.
A global review of the impacts of invasive cats on island endangered vertebrates.Crossref | GoogleScholarGoogle Scholar |

Munoz, E. M., Ortega, A. M., Bock, B. C., and Paez, V. P. (2003). Demografia y ecologia de anidacion de la iguana verde, Iguana iguana (Squamata: Iguanidae), en dos poblaciones explotadas en la Depression Momposina, Columbia. Revista de Biología Tropical 52, 229–239.

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 10706275PubMed |

National Congress (2004). Executive Agreement No. 002–2004. Tegucigalpa, Honduras.

Pasachnik, S. A. (2013). Growth, reproduction, and diet of Roatán spiny-tailed iguanas, Ctenosaura oedirhina, with notes on the status of the species. Herpetological Conservation and Biology 8, 191–198.

Pasachnik, S. A., and Hudman, S. (2016). Conservation genetics of Roatán spiny-tailed iguanas, Ctenosaura oedirhina. Herpetological Conservation and Biology 11, 187–196.

Pasachnik, S. A., Ariano-Sánchez, D., Burgess, J., Montgomery, C. E., and Köhler, G. (2010). Ctenosaura oedirhina. In ‘The IUCN Red List of Threatened Species. Version 2014.2’. (IUCN: Gland, Switzerland.)

Pasachnik, S. A., Carreras De Leon, R., and Leon, Y. M. (2016). Protected only on paper? Three case studies from the Dominican Republic. Caribbean Naturalist 30, 1–19.

Pasachnik, S. A., Montgomery, C. E., Martinez, A., Belal, N., Clayson, S., and Faulkner, S. (2012a). Body size, demography, and body condition in Utila spiny-tailed iguanas, Ctenosaura bakeri. Herpetological Conservation and Biology 7, 391–398.

Pasachnik, S. A., Montgomery, C. E., Ruyle, L. E., Corneil, J. P., and Antunez, E. E. (2012b). Morphological and demographic analysis of the black-chested spiny-tailed iguana, Ctenosaura melanosterna, across their range: implications for population level management. Herpetological Conservation and Biology 7, 399–406.

R Development Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org [verified 20 December 2019].

Reed, D. H., and Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology 17, 230–237.
Correlation between fitness and genetic diversity.Crossref | GoogleScholarGoogle Scholar |

Refsnider, J. M., Keall, S. N., Daugherty, C. H., and Nelson, N. J. (2009). Does nest-guarding in female tuatara (Sphenodon punctatus) reduce nest destruction by conspecific females? Journal of Herpetology 43, 294–299.
Does nest-guarding in female tuatara (Sphenodon punctatus) reduce nest destruction by conspecific females?Crossref | GoogleScholarGoogle Scholar |

Rittman, D. (2007). Langjährige Haltung, Pflege und Nachzucht des Roatán -Schwarzleguans ~ DE QUEIROZ, 1987, sowie Beobachtungen in dessen Lebensraum [Long-term husbandry, care and breeding of the Isla de Roatán Iguana ~DE QUEIROZ, 1987, plus observations in its natural habitat]. Elaphe 15, 33–40.

Rodda, G. H., Bock, B. C., Burghardt, G. M., and Rand, A. S. (1988). Techniques for identifying individual lizards at a distance reveal influences of handling. Copeia 1988, 905–913.
Techniques for identifying individual lizards at a distance reveal influences of handling.Crossref | GoogleScholarGoogle Scholar |

Rose, B. (1982). Lizard home ranges: methodology and functions. Journal of Herpetology 16, 253–269.
Lizard home ranges: methodology and functions.Crossref | GoogleScholarGoogle Scholar |

Row, J. R., and Blouin-Demers, G. (2006). Kernels are not accurate estimators of home-range size for herpetofauna. Copeia 2006, 797–802.
Kernels are not accurate estimators of home-range size for herpetofauna.Crossref | GoogleScholarGoogle Scholar |

Secretary of State in the Ministry of Energy, Natural Resources, Environment, and Mining (SERNA) (2001). National Biodiversity Strategy and Action Plan. Tegucigalpa, Honduras.

Secretary of State in the Ministry of Energy, Natural Resources, Environment, and Mining (SERNA) (2005). Report of the General State of Environment of Honduras. Tegucigalpa, Honduras.

Stanton, J. C., Shoemaker, K. T., Pearson, R. G., and Akçakaya, H. R. (2015). Warning times for species extinctions due to climate change. Global Change Biology 21, 1066–1077.
Warning times for species extinctions due to climate change.Crossref | GoogleScholarGoogle Scholar | 25263856PubMed |

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., and Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5–14.
Distance software: design and analysis of distance sampling surveys for estimating population size.Crossref | GoogleScholarGoogle Scholar | 20383262PubMed |

Thorne, E. T. (2004). Land rights and Garífuna identity. North American Congress on Latin America. Available at https://nacla.org/article/land-rights-and-garífuna-identity [verified 20 December 2019].

United Nations Environment Programme’s World Conservation Monitoring Centre (UNEP-WCMC) (2015). The Checklist of CITES Species Website. CITES Secretariat, Geneva, Switzerland. Compiled by UNEP-WCMC, Cambridge, UK. Available at http://checklist.cites.org [verified 27 April 2017].

United Nations Environment Programme’s World Conservation Monitoring Centre (UNEP-WCMC) (2016). Global statistics from the World Database on Protected Areas (WDPA). UNEP-WCMC, Cambridge, UK. Available at https://www.iucn.org/theme/protected-areas/our-work/quality-and-effectiveness/world-database-protected-areas-wdpa [verified 20 December 2019].

Wilson, L. D., and McCranie, J. R. (2004). The conservation status of the herpetofauna of Honduras. Amphibian & Reptile Conservation 3, 6–33.

Wilson, B., Grant, T. D., Van Veen, R., Hudson, R., Fleuchaus, D., Robinson, O., and Stephenson, K. (2016). The Jamaican iguana (Cyclura collei): a report of 25 years of conservation effort. Herpetological Conservation and Biology 11, 237–254.