Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Improving mesocarnivore detectability with lures in camera-trapping studies

Pablo Ferreras https://orcid.org/0000-0002-1116-6706 A D , Francisco Díaz-Ruiz A B and Pedro Monterroso C
+ Author Affiliations
- Author Affiliations

A Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC–UCLM–JCCM), Ronda de Toledo 12, 13071 Ciudad Real, Spain.

B Departamento de Biología Animal, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain.

C CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal.

D Corresponding author. Email: pablo.ferreras@uclm.es

Wildlife Research 45(6) 505-517 https://doi.org/10.1071/WR18037
Submitted: 24 May 2017  Accepted: 26 May 2018   Published: 14 September 2018

Abstract

Context: Camera trapping is commonly employed for studying carnivores because it provides better data than do other methods, and with lower costs. Increasing the probability of detecting the target species can reduce parameter uncertainty and survey effort required to estimate density and occurrence. Different methods, including attractants and baits, can be used to increase detectability. However, their efficacy has rarely been quantitatively assessed.

Aims: To quantify the efficacy of scent and bait attractants to increase the detection probability of mesocarnivores by camera trapping.

Methods: We tested two scent lures, valerian extract (Val) and lynx urine (LU), their combination (Val–LU), and a non-reward bait (i.e. not accessible to the animal), raw chicken, as carnivore attractants in two protected areas of central Spain. We used camera-trapping records under an occupancy-modelling framework to estimate attractant-specific detection probabilities for six mesocarnivore species, and quantified their effects by comparing these estimates with the baseline (i.e. no attractant) detectability.

Key results: The weekly detection probability of four mesocarnivore species (red fox, Vulpes vulpes, stone marten, Martes foina, common genet, Genetta genetta, and Eurasian badger, Meles meles) significantly increased when Val–LU (between 0.11 ± 0.07 and 0.67 ± 0.05) or chicken (between 0.31 ± 0.02 and 0.77 ± 0.22) were used as attractant, when compared with baseline detectability (between 0.01 ± 0.02 and 0.29 ± 0.05). Although rarely, wildcats (Felis silvestris) were mostly detected with Val–LU. The probability of detecting a species after k sampling occasions (7 days each) where it was present was highly improved with both Val–LU and chicken for all species (e.g. from 0.20 to 0.98 after four sampling occasions with chicken for the stone marten). Both attractants reduced the sampling time required to ascertain that a species was absent to between 42% and 15% of baseline values.

Conclusions: The tested attractants greatly improved the detectability of most Iberian mesocarnivores. Although chicken was preferable for some species such as stone marten, Val–LU is most efficient for detecting the whole mesocarnivore community, including rare species such as wildcats.

Implications: Attractant selection in studies using non-invasive detection methods must be supported by quantitative assessment of the detection probability associated to each attractant. Researchers must choose those attractants best fitting target species and study aims.

Additional keywords: attractants, detection probability, occupancy modelling, sampling effort.


References

Alonso, R. S., McClintock, B. T., Lyren, L. M., Boydston, E. E., and Crooks, K. R. (2015). Mark–recapture and mark-resight methods for estimating abundance with remote cameras: a carnivore case study. PLoS One 10, .
Mark–recapture and mark-resight methods for estimating abundance with remote cameras: a carnivore case study.Crossref | GoogleScholarGoogle Scholar |

Anile, S., Arrabito, C., Mazzamuto, M. V., Scornavacca, D., and Ragni, B. (2012). A non-invasive monitoring on European wildcat (Felis silvestris silvestris Schreber, 1777) in Sicily using hair trapping and camera trapping: does it work? Hystrix – Italian Journal of Mammalogy 23, 44–49.
A non-invasive monitoring on European wildcat (Felis silvestris silvestris Schreber, 1777) in Sicily using hair trapping and camera trapping: does it work?Crossref | GoogleScholarGoogle Scholar |

Arnold, T. W. (2010). Uninformative parameters and model selection using Akaike’s information criterion. The Journal of Wildlife Management 74, 1175–1178.
Uninformative parameters and model selection using Akaike’s information criterion.Crossref | GoogleScholarGoogle Scholar |

Austin, C., Tuft, K., Ramp, D., Cremona, T., and Webb, J. K. (2017). Bait preference for remote camera trap studies of the endangered northern quoll (Dasyurus hallucatus). Australian Mammalogy 39, 72–77.
Bait preference for remote camera trap studies of the endangered northern quoll (Dasyurus hallucatus).Crossref | GoogleScholarGoogle Scholar |

Balme, G., Hunter, L., and Robinson, H. (2014). Baited camera-trap surveys: marginally more precise but at what cost? A response to du Preez et al. (2014). Biological Conservation 179, 144–145.
Baited camera-trap surveys: marginally more precise but at what cost? A response to du Preez et al. (2014).Crossref | GoogleScholarGoogle Scholar |

Banks, P. B., Daly, A., and Bytheway, J. P. (2016). Predator odours attract other predators, creating an olfactory web of information. Biology Letters 12, .
Predator odours attract other predators, creating an olfactory web of information.Crossref | GoogleScholarGoogle Scholar |

Braczkowski, A. R., Balme, G. A., Dickman, A., Fattebert, J., Johnson, P., Dickerson, T., Macdonald, D. W., and Hunter, L. (2016). Scent lure effect on camera-trap based leopard density estimates. PLoS One 11, e0151033.
Scent lure effect on camera-trap based leopard density estimates.Crossref | GoogleScholarGoogle Scholar |

Burton, A. C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J. T., Bayne, E., and Boutin, S. (2015). Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52, 675–685.
Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes.Crossref | GoogleScholarGoogle Scholar |

Chamberlain, M. J., Mangrum, J. W., Leopold, B. D., and Hill, E. P. (1999). A comparison of attractants used for carnivore track surveys. In ‘Proceedings of the Fifty-Third Annual Conference of the Southeastern Association of Fish and Wildlife Agencies’. (Ed. A. G. Eversole.) pp. 296–304. (Southeastern Association Fish & Wildlife Agencies (SEAFWA): Tallahassee, FL.)

Clapperton, B. K., Murphy, E. C., and Razzaq, H. A. A. (2017). Mammalian pheromones: new opportunities for improved predator control in New Zealand. Science for Conservation 330, 1–53.

Claridge, A. W., Mifsud, G., Dawson, J., and Saxon, M. J. (2004). Use of infrared digital cameras to investigate the behaviour of cryptic species. Wildlife Research 31, 645–650.
Use of infrared digital cameras to investigate the behaviour of cryptic species.Crossref | GoogleScholarGoogle Scholar |

Cove, M., Spinola, R. M., Jackson, V. L., and Saenz, J. (2014). Camera trapping ocelots: an evaluation of felid attractants. Hystrix – Italian Journal of Mammalogy 25, 113–116.
Camera trapping ocelots: an evaluation of felid attractants.Crossref | GoogleScholarGoogle Scholar |

Dempsey, S. J., Gese, E. M., and Kluever, B. M. (2014). Finding a fox: an evaluation of survey methods to estimate abundance of a small desert carnivore. PLoS One 9, e105873.
Finding a fox: an evaluation of survey methods to estimate abundance of a small desert carnivore.Crossref | GoogleScholarGoogle Scholar |

Di Bitetti, M. S., Paviolo, A., and De Angelo, C. (2014). Camera trap photographic rates on roads vs. off roads: location does matter. Mastozoología Neotropical 21, 37–46.

Diete, R. L., Meek, P. D., Dixon, K. M., Dickman, C. R., and Leung, L. K. P. (2015). Best bait for your buck: bait preference for camera trapping north Australian mammals. Australian Journal of Zoology 63, 376–382.
Best bait for your buck: bait preference for camera trapping north Australian mammals.Crossref | GoogleScholarGoogle Scholar |

Downey, P. J., Hellgren, E. C., Caso, A., Carvajal, S., and Frangioso, K. (2007). Hair snares for noninvasive sampling of felids in North America: do gray foxes affect success? The Journal of Wildlife Management 71, 2090–2094.
Hair snares for noninvasive sampling of felids in North America: do gray foxes affect success?Crossref | GoogleScholarGoogle Scholar |

Driessen, M. M., Jarman, P. J., Troy, S., and Callander, S. (2017). Animal detections vary among commonly used camera trap models. Wildlife Research 44, 291–297.
Animal detections vary among commonly used camera trap models.Crossref | GoogleScholarGoogle Scholar |

du Preez, B. D., Loveridge, A. J., and Macdonald, D. W. (2014). To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density. Biological Conservation 176, 153–161.
To bait or not to bait: a comparison of camera-trapping methods for estimating leopard Panthera pardus density.Crossref | GoogleScholarGoogle Scholar |

Edwards, G. P., de Preu, N. D., Schakeshaft, B. J., and Crealy, I. V. (2000). An evaluation of two methods of assessing feral cat and dingo abundance in central Australia. Wildlife Research 27, 143–149.
An evaluation of two methods of assessing feral cat and dingo abundance in central Australia.Crossref | GoogleScholarGoogle Scholar |

Engels, B. (2015). ‘XNomial: Exact Goodness-of-Fit Test for Multinomial Data with Fixed Probabilities. R package version 1.0.4.’ Available at https://CRAN.R-project.org/package=XNomial. [Verified 1 January 2018]

Farris, Z. J., Golden, C. D., Karpanty, S., Murphy, A., Stauffer, D., Ratelolahy, F., Andrianjakarivelo, V., Holmes, C. M., and Kelly, M. J. (2015). Hunting, exotic carnivores, and habitat loss: anthropogenic effects on a native carnivore community, Madagascar. PLoS One 10, e0136456.
Hunting, exotic carnivores, and habitat loss: anthropogenic effects on a native carnivore community, Madagascar.Crossref | GoogleScholarGoogle Scholar |

Ferreras, P., Díaz-Ruiz, F., Alves, P. C., and Monterroso, P. (2016). Factores de la coexistencia de mesocarnívoros en parques nacionales de ambiente mediterráneo. In ‘Proyectos de Investigación en Parques Nacionales 2011–2014’. (Ed. P. Amengual.) pp. 321–339. (Organismo Autónomo Parques Nacionales, MAGRAMA: Madrid.)

Ferreras, P., Díaz-Ruiz, F., Alves, P. C., and Monterroso, P. (2017). Optimizing camera-trapping protocols for characterizing mesocarnivore communities in south-western Europe. Journal of Zoology 301, 23–31.
Optimizing camera-trapping protocols for characterizing mesocarnivore communities in south-western Europe.Crossref | GoogleScholarGoogle Scholar |

Foresman, K. R., and Pearson, D. E. (1998). Comparison of proposed survey procedures for detection of forest carnivores. The Journal of Wildlife Management 62, 1217–1226.
Comparison of proposed survey procedures for detection of forest carnivores.Crossref | GoogleScholarGoogle Scholar |

Garrote, G., Gil-Sánchez, J. M., McCain, E., Lillo, S., Tellería, J. L., and Simón, M. Á. (2012). The effect of attractant lures in camera trapping: a case study of population estimates for the Iberian lynx (Lynx pardinus). European Journal of Wildlife Research 58, 881–884.
The effect of attractant lures in camera trapping: a case study of population estimates for the Iberian lynx (Lynx pardinus).Crossref | GoogleScholarGoogle Scholar |

Garvey, P. M., Glen, A. S., and Pech, R. P. (2016). Dominant predator odour triggers caution and eavesdropping behaviour in a mammalian mesopredator. Behavioral Ecology and Sociobiology 70, 481–492.
Dominant predator odour triggers caution and eavesdropping behaviour in a mammalian mesopredator.Crossref | GoogleScholarGoogle Scholar |

Gerber, B., Karpanty, S., and Kelly, M. (2012). Evaluating the potential biases in carnivore capture–recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Population Ecology 54, 43–54.
Evaluating the potential biases in carnivore capture–recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet.Crossref | GoogleScholarGoogle Scholar |

Glen, A. S., and Dickman, C. R. (2003). Effects of bait-station design on the uptake of baits by non-target animals during control programmes for foxes and wild dogs. Wildlife Research 30, 147–149.
Effects of bait-station design on the uptake of baits by non-target animals during control programmes for foxes and wild dogs.Crossref | GoogleScholarGoogle Scholar |

Gompper, M. E., Kays, R. W., Ray, J. C., Lapoint, S. D., Bogan, D. A., and Cryan, J. R. (2006). A comparison of noninvasive techniques to survey carnivore communities in northeastern North America. Wildlife Society Bulletin 34, 1142–1151.
A comparison of noninvasive techniques to survey carnivore communities in northeastern North America.Crossref | GoogleScholarGoogle Scholar |

Guzy, J. C., Price, S. J., and Dorcas, M. E. (2014). Using multiple methods to assess detection probabilities of riparian-zone anurans: implications for monitoring. Wildlife Research 41, 243–257.
Using multiple methods to assess detection probabilities of riparian-zone anurans: implications for monitoring.Crossref | GoogleScholarGoogle Scholar |

Harris, C. E., and Knowlton, F. F. (2001). Differential responses of coyotes to novel stimuli in familiar and unfamiliar settings. Canadian Journal of Zoology 79, 2005–2013.
Differential responses of coyotes to novel stimuli in familiar and unfamiliar settings.Crossref | GoogleScholarGoogle Scholar |

Haynes, T. B., Rosenberger, A. E., Lindberg, M. S., Whitman, M., and Schmutz, J. A. (2013). Method- and species-specific detection probabilities of fish occupancy in Arctic lakes: implications for design and management. Canadian Journal of Fisheries and Aquatic Sciences 70, 1055–1062.
Method- and species-specific detection probabilities of fish occupancy in Arctic lakes: implications for design and management.Crossref | GoogleScholarGoogle Scholar |

Hines, J. E. (2015). ‘PRESENCE 8.3: Software to Estimate Patch Occupancy and Related Parameters.’ (Patuxent Wildlife Research Center: Laurel, Maryland). Available at http://www.mbr-pwrc.usgs.gov/software/presence.html [accessed 1 January 2018].

Howard, M. E., Zuercher, G. L., Gipson, P. S., and Livingston, T. R. (2002). Efficacy of feces as an attractant for mammalian carnivores. The Southwestern Naturalist 47, 348–352.
Efficacy of feces as an attractant for mammalian carnivores.Crossref | GoogleScholarGoogle Scholar |

Jordan, M. J., and Lobb-Rabe, M. (2015). An evaluation of methods to attract urban mesocarnivores to track plates and camera traps. Northwest Science 89, 383–392.
An evaluation of methods to attract urban mesocarnivores to track plates and camera traps.Crossref | GoogleScholarGoogle Scholar |

Karanth, K. U., and Nichols, J. D. (1998). Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 2852–2862.
Estimation of tiger densities in India using photographic captures and recaptures.Crossref | GoogleScholarGoogle Scholar |

Karanth, K. U., Nichols, J. D., and Kumar, A. (2011). Estimating tiger abundance from camera trap data: field surveys and analytical issues. In ‘Camera traps in animal ecology: Methods and analyses’. (Eds A. F. O’Connell, J. D. Nichols and K. U. Karanth.) pp. 97–117. (Springer: Tokyo, Japan.)

Kellner, K. F., and Swihart, R. K. (2014). Accounting for imperfect detection in ecology: a quantitative review. PLoS One 9, e111436.
Accounting for imperfect detection in ecology: a quantitative review.Crossref | GoogleScholarGoogle Scholar |

Kéry, M., Gardner, B., Stoeckle, T., Weber, D., and Royle, J. A. (2011). Use of spatial capture–recapture modeling and DNA data to estimate densities of elusive animals. Conservation Biology 25, 356–364.

Kilshaw, K., and Macdonald, D. W. (2011). The use of camera trapping as a method to survey for the Scottish wildcat. Commissioned report no. 479. (Scottish Natural Heritage: Inverness, UK.)

Kitchener, A. (1991). ‘The Natural History of the Wild Cats.’ (Helm: London.)

Leo, V., Reading, R., and Letnic, M. (2015). Interference competition: odours of an apex predator and conspecifics influence resource acquisition by red foxes. Oecologia 179, 1033–1040.
Interference competition: odours of an apex predator and conspecifics influence resource acquisition by red foxes.Crossref | GoogleScholarGoogle Scholar |

Long, R. A., MacKay, P., Zielinski, W. J., and Ray, J. C. (2008). ‘Noninvasive Survey Methods for Carnivores.’ (Island Press: Washington, DC.)

Lucas, T. C. D., Moorcroft, E. A., Freeman, R., Rowcliffe, J. M., and Jones, K. E. (2015). A generalised random encounter model for estimating animal density with remote sensor data. Methods in Ecology and Evolution 6, 500–509.
A generalised random encounter model for estimating animal density with remote sensor data.Crossref | GoogleScholarGoogle Scholar |

Mace, R. D., Minta, S. C., Manley, T. L., and Aune, K. E. (1994). Estimating grizzly bear population size using camera sightings. Wildlife Society Bulletin 22, 74–83.

MacKenzie, D. I., and Bailey, L. L. (2004). Assessing the fit of site-occupancy models. Journal of Agricultural Biological & Environmental Statistics 9, 300–318.
Assessing the fit of site-occupancy models.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., and Royle, J. A. (2005). Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology 42, 1105–1114.
Designing occupancy studies: general advice and allocating survey effort.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
Estimating site occupancy rates when detection probabilities are less than one.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Sutton, N., Kawanishi, K., and Bailey, L. L. (2005). Improving inferences in population studies of rare species that are detected imperfectly. Ecology 86, 1101–1113.
Improving inferences in population studies of rare species that are detected imperfectly.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K., Bailey, L. L., and Hines, J. (2006). ‘Occupancy Estimation and Modeling. Inferring Patterns and Dynamics of Species Occurrence.’ (Academic Press: New York.)

Mann, G. K. H., O’Riain, M. J., and Parker, D. M. (2015). The road less travelled: assessing variation in mammal detection probabilities with camera traps in a semi-arid biodiversity hotspot. Biodiversity and Conservation 24, 531–545.
The road less travelled: assessing variation in mammal detection probabilities with camera traps in a semi-arid biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar |

McDaniel, G. W., McKelvey, K. S., Squires, J. R., and Ruggiero, L. F. (2000). Efficacy of lures and hair snares to detect lynx. Wildlife Society Bulletin 28, 119–123.

McKelvey, K. S., Claar, J. J., McDaniel, G. W., and Hanvey, G. (1999). ‘National Lynx Detection Protocol.’ (USDA Forest Service Rocky Mountain Research (UFSRMR) Station: Missoula, MT.)

McLean, W. R., Goldingay, R. L., and Westcott, D. A. (2017). Visual lures increase camera-trap detection of the southern cassowary (Casuarius casuarius johnsonii). Wildlife Research 44, 230–237.
Visual lures increase camera-trap detection of the southern cassowary (Casuarius casuarius johnsonii).Crossref | GoogleScholarGoogle Scholar |

Meek, P. D., Ballard, G., Claridge, A., Kays, R., Moseby, K., O’Brien, T., O’Connell, A., Sanderson, J., Swann, D. E., Tobler, M., and Townsend, S. (2014a). Recommended guiding principles for reporting on camera trapping research. Biodiversity and Conservation 23, 2321–2343.
Recommended guiding principles for reporting on camera trapping research.Crossref | GoogleScholarGoogle Scholar |

Meek, P., Fleming, P., Ballard, G., Banks, P., Claridge, A., Sanderson, J., and Swann, D. (2014b) ‘Camera Trapping: Wildlife Management and Research.’ (CSIRO Publishing: Melbourne.)

Meek, P. D., Ballard, G. A., and Fleming, P. J. S. (2015). The pitfalls of wildlife camera trapping as a survey tool in Australia. Australian Mammalogy 37, 13–22.
The pitfalls of wildlife camera trapping as a survey tool in Australia.Crossref | GoogleScholarGoogle Scholar |

Meek, P., Ballard, G., Fleming, P., and Falzon, G. (2016). Are we getting the full picture? Animal responses to camera traps and implications for predator studies. Ecology and Evolution 6, 3216–3225.
Are we getting the full picture? Animal responses to camera traps and implications for predator studies.Crossref | GoogleScholarGoogle Scholar |

Monterroso, P., Brito, J. C., Ferreras, P., and Alves, P. C. (2009). Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small radio-tracking datasets in species conservation. Journal of Zoology 279, 27–35.
Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small radio-tracking datasets in species conservation.Crossref | GoogleScholarGoogle Scholar |

Monterroso, P., Alves, P. C., and Ferreras, P. (2011). Evaluation of attractants for non-invasive studies of Iberian carnivore communities. Wildlife Research 38, 446–454.
Evaluation of attractants for non-invasive studies of Iberian carnivore communities.Crossref | GoogleScholarGoogle Scholar |

Monterroso, P., Castro, D., Silva, T. L., Ferreras, P., Godinho, R., and Alves, P. C. (2013). Factors affecting the (in) accuracy of mammalian mesocarnivore scat identification in south-western Europe. Journal of Zoology 289, 243–250.
Factors affecting the (in) accuracy of mammalian mesocarnivore scat identification in south-western Europe.Crossref | GoogleScholarGoogle Scholar |

O’Brien, T. G., Kinnaird, M. F., and Wibisono, H. T. (2003). Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation 6, 131–139.
Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape.Crossref | GoogleScholarGoogle Scholar |

O’Connell, A. F., Talancy, N. W., Bailey, L. L., Sauer, J. R., Cook, R., and Gilbert, A. T. (2006). Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem. The Journal of Wildlife Management 70, 1625–1633.
Estimating site occupancy and detection probability parameters for meso- and large mammals in a coastal ecosystem.Crossref | GoogleScholarGoogle Scholar |

O’Connell, A. F., Nichols, J. D., and Karanth, K. U. (2010). ‘Camera Traps in Animal Ecology: Methods and Analyses.’ (Springer: Tokyo.)

Olea, P. P., and Mateo-Tomás, P. (2011). Spatially explicit estimation of occupancy, detection probability and survey effort needed to inform conservation planning. Diversity & Distributions 17, 714–724.
Spatially explicit estimation of occupancy, detection probability and survey effort needed to inform conservation planning.Crossref | GoogleScholarGoogle Scholar |

Otto, C. R. V., and Roloff, G. J. (2011). Using multiple methods to assess detection probabilities of forest-floor wildlife. The Journal of Wildlife Management 75, 423–431.
Using multiple methods to assess detection probabilities of forest-floor wildlife.Crossref | GoogleScholarGoogle Scholar |

Pagano, A. M., and Arnold, T. W. (2009). Detection probabilities for ground-based breeding waterfowl surveys. The Journal of Wildlife Management 73, 392–398.
Detection probabilities for ground-based breeding waterfowl surveys.Crossref | GoogleScholarGoogle Scholar |

Palomares, F., Ferreras, P., Fedriani, J. M., and Delibes, M. (1996). Spatial relationships between Iberian lynx and other carnivores in an area of south-western Spain. Journal of Applied Ecology 33, 5–13.
Spatial relationships between Iberian lynx and other carnivores in an area of south-western Spain.Crossref | GoogleScholarGoogle Scholar |

Paull, D. J., Claridge, A. W., and Barry, S. C. (2011). There’s no accounting for taste: bait attractants and infrared digital cameras for detecting small to medium ground-dwelling mammals. Wildlife Research 38, 188–195.
There’s no accounting for taste: bait attractants and infrared digital cameras for detecting small to medium ground-dwelling mammals.Crossref | GoogleScholarGoogle Scholar |

Petitot, M., Manceau, N., Geniez, P., and Besnard, A. (2014). Optimizing occupancy surveys by maximizing detection probability: application to amphibian monitoring in the Mediterranean region. Ecology and Evolution 4, 3538–3549.
Optimizing occupancy surveys by maximizing detection probability: application to amphibian monitoring in the Mediterranean region.Crossref | GoogleScholarGoogle Scholar |

Pollock, K. H. (1982). A capture-recapture design robust to unequal probability of capture. The Journal of Wildlife Management 46, 752–757.
A capture-recapture design robust to unequal probability of capture.Crossref | GoogleScholarGoogle Scholar |

Portella, T. P., Bilski, D. R., Passos, F. C., and Pie, M. R. (2013). Assessing the efficacy of hair snares as a method for noninvasive sampling of Neotropical felids. Zoologia 30, 49–54.
Assessing the efficacy of hair snares as a method for noninvasive sampling of Neotropical felids.Crossref | GoogleScholarGoogle Scholar |

Read, J. L., Bengsen, A. J., Meek, P. D., and Moseby, K. E. (2015). How to snap your cat: optimum lures and their placement for attracting mammalian predators in arid Australia. Wildlife Research 42, 1–12.
How to snap your cat: optimum lures and their placement for attracting mammalian predators in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Rovero, F., Zimmermann, F., Berzi, D., and Meek, P. (2013). ‘Which camera trap type and how many do I need?’ A review of camera features and study designs for a range of wildlife research applications. Hystrix – Italian Journal of Mammalogy 24, 148–156.
‘Which camera trap type and how many do I need?’ A review of camera features and study designs for a range of wildlife research applications.Crossref | GoogleScholarGoogle Scholar |

Rowcliffe, J. M., Field, J., Turvey, S. T., and Carbone, C. (2008). Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology 45, 1228–1236.
Estimating animal density using camera traps without the need for individual recognition.Crossref | GoogleScholarGoogle Scholar |

Santos-Reis, M., Santos, M. J., Lourenco, S., Marques, J. T., Pereira, I., and Pinto, B. (2004). Relationships between stone martens, genets and cork oak woodlands in Portugal. In ‘Martens and Fishers (Martes) in Human-altered Environments: an International Perspective’. (Eds D. Harrison, A. Fuller and G. Proulx.) pp. 147–172. (Springer: New York.)

Saunders, G., and Harris, S. (2000). Evaluation of attractants and bait preferences of captive red foxes (Vulpes vulpes). Wildlife Research 27, 237–243.
Evaluation of attractants and bait preferences of captive red foxes (Vulpes vulpes).Crossref | GoogleScholarGoogle Scholar |

Saunders, G. R., Gentle, M. N., and Dickman, C. R. (2010). The impacts and management of foxes Vulpes vulpes in Australia. Mammal Review 40, 181–211.
The impacts and management of foxes Vulpes vulpes in Australia.Crossref | GoogleScholarGoogle Scholar |

Schlexer, F. V. (2008). Attracting animals to detection devices. In ‘Noninvasive Survey Methods for Carnivores’. (Eds R. A. Long, P. MacKay, W. J. Zielinski and J. C. Ray.) pp. 263–292. (Island Press: Washington, DC.)

Schmidt, K., and Kowalczyk, R. (2006). Using scent-marking stations to collect hair samples to monitor Eurasian lynx populations. Wildlife Society Bulletin 34, 462–466.
Using scent-marking stations to collect hair samples to monitor Eurasian lynx populations.Crossref | GoogleScholarGoogle Scholar |

Steyer, K., Simon, O., Kraus, R. S., Haase, P., and Nowak, C. (2013). Hair trapping with valerian-treated lure sticks as a tool for genetic wildcat monitoring in low-density habitats. European Journal of Wildlife Research 59, 39–46.
Hair trapping with valerian-treated lure sticks as a tool for genetic wildcat monitoring in low-density habitats.Crossref | GoogleScholarGoogle Scholar |

Stokeld, D., Frank, A. S. K., Hill, B., Choy, J. L., Mahney, T., Stevens, A., Young, S., Rangers, D., Rangers, W., and Gillespie, G. R. (2015). Multiple cameras required to reliably detect feral cats in northern Australian tropical savanna: an evaluation of sampling design when using camera traps. Wildlife Research 42, 642–649.
Multiple cameras required to reliably detect feral cats in northern Australian tropical savanna: an evaluation of sampling design when using camera traps.Crossref | GoogleScholarGoogle Scholar |

Thorn, M., Scott, D. M., Green, M., Bateman, P. W., and Cameron, E. Z. (2009). Estimating brown hyaena occupancy using baited camera traps. South African Journal of Wildlife Research 39, 1–10.
Estimating brown hyaena occupancy using baited camera traps.Crossref | GoogleScholarGoogle Scholar |

Wikenros, C., Jarnemo, A., Frisén, M., Kuijper, D. P. J., and Schmidt, K. (2017). Mesopredator behavioral response to olfactory signals of an apex predator. Journal of Ethology 35, 161–168.
Mesopredator behavioral response to olfactory signals of an apex predator.Crossref | GoogleScholarGoogle Scholar |

Wilson, G. J., and Delahay, R. J. (2001). A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation. Wildlife Research 28, 151–164.
A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation.Crossref | GoogleScholarGoogle Scholar |

Wintle, B. A., Kavanagh, R. P., McCarthy, M. A., and Burgman, M. A. (2005). Estimating and dealing with detectability in occupancy surveys for forest owls and arboreal marsupials. The Journal of Wildlife Management 69, 905–917.
Estimating and dealing with detectability in occupancy surveys for forest owls and arboreal marsupials.Crossref | GoogleScholarGoogle Scholar |

Wintle, B. A., Walshe, T. V., Parris, K. M., and McCarthy, M. A. (2012). Designing occupancy surveys and interpreting non-detection when observations are imperfect. Diversity & Distributions 18, 417–424.
Designing occupancy surveys and interpreting non-detection when observations are imperfect.Crossref | GoogleScholarGoogle Scholar |

Zielinski, W. J., and Kucera, T. E. (Eds) (1995). American marten, fisher, lynx, and wolverine: survey methods for their detection. US Forest Service General Technical Report PSW. US Forest Service, Pacific Southwest Research Station, Berkeley, CA.

Zielinski, W. J., Schlexer, F. V., Pilgrim, K. L., and Schwartz, M. K. (2006). The efficacy of wire and glue hair snares in identifying mesocarnivores. Wildlife Society Bulletin 34, 1152–1161.
The efficacy of wire and glue hair snares in identifying mesocarnivores.Crossref | GoogleScholarGoogle Scholar |

Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M. (2009). ‘Mixed Effects Models and Extensions in Ecology with R.’ (Springer: New York.)