Spiders as potential bioindicators of mountain grasslands health: the Argentine tarantula Grammostola vachoni (Araneae, Theraphosidae)
Leonela Schwerdt A D , Ana Elena de Villalobos A B and Fernando Pérez Miles CA Centro de Recursos Renovables de la Zona Semiárida-CONICET, Bahía Blanca, Argentina.
B Universidad Nacional del Sur, Bahía Blanca, Argentina.
C Sección Entomología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
D Corresponding author. Email: lschwerdt@cerzos-conicet.gob.ar
Wildlife Research 45(1) 64-71 https://doi.org/10.1071/WR17071
Submitted: 20 May 2017 Accepted: 14 November 2017 Published: 29 March 2018
Abstract
Context: Bioindicators are used for conservation prioritisation by means of spatial comparisons of a site value, or monitoring of ecosystem recovery or response to management. Spiders are characterised by their selection of quality habitats and guild responses to environmental change. However, they have only occasionally been used as bioindicators. Grammostola vachoni is an endemic tarantula that only occurs in the grasslands of the mountainous system in central Argentina and it is included in the Red List of the IUCN as Vulnerable.
Aims: In this study, we performed a characterisation of the microhabitat of G. vachoni at sites with different disturbance regimes and we analysed the potential use of this species as a bioindicator of mountain grassland health.
Methods: We determined the microhabitat characteristics around their refuges by mean of the soil parameters, as well as the composition and structure of vegetation and amount of refuge available.
Key results: We found significant differences in the number of individuals and the percentage of occupation between sites. No significant differences were recorded in the soil characteristics and occupation of G. vachoni but we found that the composition of vegetation, and the heterogeneity and diversity of plants are influenced by different disturbance regimes, altering the distribution of spiders.
Conclusions: Our results are consistent with those of other studies where the spiders have proved to be good bioindicators of different disturbances and we propose for the first time a Theraphosidae species for evaluating the state or health of a natural grassland.
Implications: The information reported in this study is very important to provide data for a future re-categorisation of G. vachoni for the Red List of IUCN. Also, we add new component of ecosystems for to use as indicator, open up the possibility for new research for the same and other species of a grasslands of the mountainous system.
Additional keywords: Ecological indicator, microhabitat, endangered species, endemic spider, Ventania System.
References
Barton, P. S., Evans, M. J., Foster, C. N., Cunningham, S. A., and Manning, A. D. (2017). Environmental and spatial drivers of spider diversity at contrasting microhabitats. Austral Ecology , .| Environmental and spatial drivers of spider diversity at contrasting microhabitats.Crossref | GoogleScholarGoogle Scholar |
Bilenca, D., and Miñaro, F. (2004). Identificación de Áreas Valiosas Pastizal (AVPs) en las Pampas y campos de Argentina, Uruguay y sur de Brasil. Fundación Vida Silvestre Argentina, Buenos Aires.
Bouyer, J., Sana, Y., Samandoulgou, Y., Cesar, J., Guerrini, L., Kabore-Zoungrana, C., and Dulieu, D. (2007). Identification of ecological indicators for monitoring ecosystem health in the trans-boundary W regional park: a pilot study. Biological Conservation 138, 73–88.
| Identification of ecological indicators for monitoring ecosystem health in the trans-boundary W regional park: a pilot study.Crossref | GoogleScholarGoogle Scholar |
Bradley, R. A. (1993). The influence of prey availability and habitat on activity patterns and abundance of Argiope keyserlingi (Araneae: Araneidae). The Journal of Arachnology 21, 91–106.
Brown, K. S., Jr. (1996). The use of insects in the study, inventory, conservation and monitoring of biological diversity in the Neotropics, in relation to land use models. In Decline and Conservation of Butterflies in Japan. Hirowatari SA, Ishii T & Brower M, eds., pp. 128–149. (Lepidopterological Society of Japan, Osaka).
Cai, H. J., You, M. S., and Lin, C. (2010). Effects of intercropping systems on community composition and diversity of predatory arthropods in vegetable fields. Acta Ecologica Sinica 30, 190–195.
| Effects of intercropping systems on community composition and diversity of predatory arthropods in vegetable fields.Crossref | GoogleScholarGoogle Scholar |
Canning, G., Reilly, B. K., and Dippenaar-Shoeman, A. S. (2014). Borrow structure and microhabitat characteristics of Nesiergus insulanus (Araneae: Theraphosidae) from Fregate Island, Seychelles. The Journal of Arachnology 42, 293–298.
| Borrow structure and microhabitat characteristics of Nesiergus insulanus (Araneae: Theraphosidae) from Fregate Island, Seychelles.Crossref | GoogleScholarGoogle Scholar |
Cloudsley-Thompson, J. L. (1983). Desert adaptations in spiders. Journal of Arid Environments 6, 307–317.
Cuevas, Y., and Zalba, S. M. (2010). Recovery of native grasslands after removing invasive pines. Restoration Ecology 18, 711–719.
| Recovery of native grasslands after removing invasive pines.Crossref | GoogleScholarGoogle Scholar |
Cutler, B., and Guarisco, H. (1995). Dispersal aggregation of Sphodros fitchi (Araneae, Atypidae). The Journal of Arachnology 23, 205–206.
Daubenmire, R. F. (1959). Canopy coverage method of vegetation analysis. Northwest Science 33, 43–64.
de Villalobos, A. E., and Zalba, S. M. (2010). Changes in grassland communities after ten years of grazing by feral horses: Prospects for restoration after horse removal. Acta Oecologica 36, 514–519.
| Changes in grassland communities after ten years of grazing by feral horses: Prospects for restoration after horse removal.Crossref | GoogleScholarGoogle Scholar |
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., and Robledo, C. W. (2013). InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. On line at http://www.infostat.com.ar.
Dias, M. A., Simó, M., Castellano, I., and Brescovit, A. D. (2011). Modeling distribution of Phoneutria bahiensis (Araneae: Ctenidae): an endemic and threatened spider from Brazil. Zoologia 28, 432–439.
| Modeling distribution of Phoneutria bahiensis (Araneae: Ctenidae): an endemic and threatened spider from Brazil.Crossref | GoogleScholarGoogle Scholar |
Evans, K. L., and Hambler, C. (1995). The microhabitat of Tuberta maerens (Araneae, Agelenidae). Bulletin of the British Arachnological Society 10, 101–103.
Ferretti, N. E., and Pompozzi, G. (2012). Grammostola vachoni. In IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. <www.iucnredlist.org>.
Frangi, J. L., and Bottino, O. J. (1995). Comunidades vegetales de la Sierra de la Ventana, Provincia de Buenos Aires. Revista de la Facultad de Agronomía 71, 93–133.
Gardner, T. A., Barlow, J., Araujo, I. S., Ávila-Pires, T. C., Bonaldo, A. B., Costa, J. E., Esposito, M. C., Ferreira, L. V., Hawes, J., Hernandez, M. I. M., Hoogmoed, M. S., Leite, R. N., Lo-Man-Hung, N. F., Malcolm, J. R., Martins, M. B., Mestre, L. A. M., Miranda-Santos, R., Overal, W. L., Parry, L., Peters, S. L., Ribeiro-Junior, M. A., da Silva, M. N. F., Motta, C. S., and Peres, C. A. (2008). The cost-effectiveness of biodiversity surveys in tropical forests. Ecology Letters 11, 139–150.
| The cost-effectiveness of biodiversity surveys in tropical forests.Crossref | GoogleScholarGoogle Scholar |
Ghione, S., Simó, M., Aisenberg, A., and Costa, F. G. (2013). Allocosa brasiliensis (Araneae, Lycosidae) as a bioindicator of coastal sand dunes in Uruguay. Arachnology 16, 94–98.
| Allocosa brasiliensis (Araneae, Lycosidae) as a bioindicator of coastal sand dunes in Uruguay.Crossref | GoogleScholarGoogle Scholar |
Gotelli, N. (1993). Antlion zones: causes of high-density predator aggregation. Ecology 74, 226–237.
| Antlion zones: causes of high-density predator aggregation.Crossref | GoogleScholarGoogle Scholar |
Hammer, O., Harper, D. A. T., and Ryan, P. D. (2001). Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4, 1–9.
Hurd, L. E., and Fagan, W. F. (1992). Cursorial spiders and succession age or habitat structure. Oecologia 92, 215–221.
| Cursorial spiders and succession age or habitat structure.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC1czotFGlsQ%3D%3D&md5=a29f421c4bed638606a49a05facaf520CAS |
Jankowski-Bell, M. E., and Horner, N. V. (1999). Movement of the male brown tarantula, Aphonopelma hentzi (Araneae, Theraphosidae), using radio telemetry. The Journal of Arachnology 27, 503–512.
Johnson, J. C. (2005). The role of body size in mating interactions of the sexually cannibalistic fishing spider Dolomedes triton. Ethology 111, 51–61.
| The role of body size in mating interactions of the sexually cannibalistic fishing spider Dolomedes triton.Crossref | GoogleScholarGoogle Scholar |
Kaltsas, D., Panayiotou, E., Chatzaki, M., and Mylonas, M. (2014). Ground spider assemblages (Araneae: Gnaphosidae) along an urban-rural gradient in the city of Heraklion, Greece. European Journal of Entomology 111, 59–67.
| Ground spider assemblages (Araneae: Gnaphosidae) along an urban-rural gradient in the city of Heraklion, Greece.Crossref | GoogleScholarGoogle Scholar |
Kim, K. C., and Byrne, L. B. (2006). Biodiversity loss and the taxonomic bottleneck: emerging biodiversity science. Ecological Research 21, 794–810.
| Biodiversity loss and the taxonomic bottleneck: emerging biodiversity science.Crossref | GoogleScholarGoogle Scholar |
Kremen, C., Colwell, R. K., Erwin, T. L., Murphy, D. D., Noss, R. F., and Sanjayan, M. A. (1993). Terrestrial Arthropod Assemblages: Their Use in Conservation Planning. Conservation Biology 7, 796–808.
| Terrestrial Arthropod Assemblages: Their Use in Conservation Planning.Crossref | GoogleScholarGoogle Scholar |
Landsman, A. P., and Bowman, J. L. (2017). Discordant response of spider communities to forest disturbed by deer herbivore and changes in prey availability. Ecosphere 8, e01703.
| Discordant response of spider communities to forest disturbed by deer herbivore and changes in prey availability.Crossref | GoogleScholarGoogle Scholar |
Langellotto, G. A., and Denno, R. F. (2004). Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis. Oecologia 139, 1–10.
| Responses of invertebrate natural enemies to complex-structured habitats: a meta-analytical synthesis.Crossref | GoogleScholarGoogle Scholar |
Leborgne, R., and Pasquet, A. (2005). Time of oviposition and reproductive success in Argiope bruennichi (Araneae: Araneidae). European Journal of Entomology 102, 169–174.
| Time of oviposition and reproductive success in Argiope bruennichi (Araneae: Araneidae).Crossref | GoogleScholarGoogle Scholar |
Lencinas, M. V., Kreps, G., Soler, R., Peri, P. L., Porta, A., Ramirez, M., and Pastur, G. M. (2015). Neochelanops michaelseni (Pseudoscorpiones: Chernrtidae) as potential bioindicator in managed and unmanaged Nothofagus forests of Tierra del Fuego. The Journal of Arachnology 43, 406–412.
| Neochelanops michaelseni (Pseudoscorpiones: Chernrtidae) as potential bioindicator in managed and unmanaged Nothofagus forests of Tierra del Fuego.Crossref | GoogleScholarGoogle Scholar |
Loydi, A., and Distel, R. (2010). Diversidad florística bajo diferentes intensidades de pastoreo por grandes herbívoros en pastizales serranos del Sistema de Ventania, Buenos Aires. Ecología Austral 20, 281–291.
M’rabet, M. S., Henaut, Y., Sepulveda, A., Rojo, R., Calme, S., and Geissen, V. (2007). Soil preference and burrow structure of an endangered tarantula, Brachypelma vagans (Mygalomorphae: Theraphosidae). Journal of Natural History 41, 1025–1033.
| Soil preference and burrow structure of an endangered tarantula, Brachypelma vagans (Mygalomorphae: Theraphosidae).Crossref | GoogleScholarGoogle Scholar |
Maelfait, J. P., and Hendrickx, F. (1998). Spiders as bioindicators of anthropogenic stress in natural and semi-natural habitats in Flanders (Belgium) some recent developments. Selden PA ed. Proceedings of the 17th European Colloquium of Aracnology, Edinburgh 1997.
Marc, P., Canard, A., and Ysnel, F. (1999). Spiders (Araneae) useful for pest limitation and bioindication. Agriculture, Ecosystems & Environment 74, 229–273.
| Spiders (Araneae) useful for pest limitation and bioindication.Crossref | GoogleScholarGoogle Scholar |
Morais-Filho, J. C., and Quevedo Romero, G. (2008). Microhabitat use by Peucetia flava (Oxyopidae) on the glandular plant Rhyncanthera dichotoma (Melastomataceae). The Journal of Arachnology 36, 374–378.
| Microhabitat use by Peucetia flava (Oxyopidae) on the glandular plant Rhyncanthera dichotoma (Melastomataceae).Crossref | GoogleScholarGoogle Scholar |
Nai-Bregaglio, M., Pucheta, E., and Cabido, M. (2002). El efecto del pastoreo sobre la diversidad florística y estructural en pastizales de montaña del centro de Argentina. Revista Chilena de Historia Natural 75, 613–623.
| El efecto del pastoreo sobre la diversidad florística y estructural en pastizales de montaña del centro de Argentina.Crossref | GoogleScholarGoogle Scholar |
Oliveira Leal, C. R., Oliveira Silva, J., Sousa-Souto, L., and de Siqueira Neves, F. (2016). Vegetation structure determines insect herbivore diversity in seasonally dry tropical forest. Journal of Insect Conservation , .
| Vegetation structure determines insect herbivore diversity in seasonally dry tropical forest.Crossref | GoogleScholarGoogle Scholar |
Ossamy, S., Elbanna, S. M., Orabi, G. M., and Semida, F. M. (2016). Assessing the potential role of spider as bioindicators in Ashtoum el Gamil Natural Protected Area, Port Said, Egypt. Indian Journal of Arachnology 5, 100–112.
Pearce, J. L., and Venier, L. A. (2006). The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: A review. Ecological Indicators 6, 780–793.
| The use of ground beetles (Coleoptera: Carabidae) and spiders (Araneae) as bioindicators of sustainable forest management: A review.Crossref | GoogleScholarGoogle Scholar |
Pérez, C. A., and Frangi, J. L. (2000). Grassland biomass dynamics an altitudinal gradient in the Pampa. Journal of Range Management 53, 518–528.
| Grassland biomass dynamics an altitudinal gradient in the Pampa.Crossref | GoogleScholarGoogle Scholar |
Peri, P. L., Bahamonde, H. A., Lencinas, M. V., Gargagliones, V., Soler, R., Ormaechea, S., and Martínez Pastur, G. (2016). A rewiew of silvopastoral systems in native forest of Nothofagus antartica in southern Patagonia, Argentina. Agroforestry Systems 90, 933–960.
| A rewiew of silvopastoral systems in native forest of Nothofagus antartica in southern Patagonia, Argentina.Crossref | GoogleScholarGoogle Scholar |
Podgaiski, L. R., and Rodriguez, G. G. (2016). Spider community responds to litter complexity: insights from a small-scare experiment in an exotic pine stand. Iheringia. Série Zoologia 107, .
| Spider community responds to litter complexity: insights from a small-scare experiment in an exotic pine stand.Crossref | GoogleScholarGoogle Scholar |
Provencher, L., and Riechert, S. E. (1991). Short term effects of hunger conditioning on spider behavior, production and gain of weight. Oikos 62, 160–166.
| Short term effects of hunger conditioning on spider behavior, production and gain of weight.Crossref | GoogleScholarGoogle Scholar |
Pucheta, E., Cabido, M., Díaz, S., and Funes, G. (1998). Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina. Acta Oecologica 19, 97–105.
| Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina.Crossref | GoogleScholarGoogle Scholar |
Rohlf, F. (2005). tpsDig, digitize landmarks and outlines, version 2.05. Departamet of Ecology and Evolution, State University of New York at Stony Brook.
Samu, F., Lengyel, G., Szita, E., Bidlo, A., and Odor, P. (2014). The effect of forest stand characteristics on spider diversity and speces composition in deciduous-coniferous mixed forest. The Journal of Arachnology 42, 135–141.
| The effect of forest stand characteristics on spider diversity and speces composition in deciduous-coniferous mixed forest.Crossref | GoogleScholarGoogle Scholar |
Scott, A. G., Oxford Geoff, S., and Selden, P. A. (2006). Epigeic spiders as ecological indicators of conservation value for peat bogs. Biological Conservation 127, 420–428.
| Epigeic spiders as ecological indicators of conservation value for peat bogs.Crossref | GoogleScholarGoogle Scholar |
Siira-Pietikäinen, A., Haimi, J., and Siitonen, J. (2003). Short-term responses of soil macroarthropod community to clear felling and alternative forest regeneration methods. Forest Ecology and Management 172, 339–353.
| Short-term responses of soil macroarthropod community to clear felling and alternative forest regeneration methods.Crossref | GoogleScholarGoogle Scholar |
Simmonds, S. J., Majer, J. D., and Nichols, O. G. (1994). A comparative study of spider (Araneae) communities of rehabilitated bauxite mines and surrounding forest in the south-west of Western Australia. Restoration Ecology 2, 247–260.
| A comparative study of spider (Araneae) communities of rehabilitated bauxite mines and surrounding forest in the south-west of Western Australia.Crossref | GoogleScholarGoogle Scholar |
Spear, D. M., Adams, T. A., Boyd, E. S., Dipman, M. M., Staubus, M. J., and Meyer, W. M. (2017). The effects of development, vegetation-type conversion, and fire on low-elevation Southern California spider assemblages. Invertebrate Biology , .
| The effects of development, vegetation-type conversion, and fire on low-elevation Southern California spider assemblages.Crossref | GoogleScholarGoogle Scholar |
Torres, V. M., González Reyes, A. X., Rodriguez Artigas, S. M., and Corronca, J. A. (2016). Efectos del disturbio antrópico sobre las poblaciones de Leprolochus birabeni (Araneae, Zosariidae) en el Chaco Seco del noroeste de Argentina. Iheringia. Série Zoologia , .
| Efectos del disturbio antrópico sobre las poblaciones de Leprolochus birabeni (Araneae, Zosariidae) en el Chaco Seco del noroeste de Argentina.Crossref | GoogleScholarGoogle Scholar |
Uetz, G. W. (1991). Habitat structure and spider foraging. In Bell SS, McCoy ED & Mushinsky HR eds. The Physical Arrangement of Objects in Space, 325–348. (London: Chapman and Hall).
Wise, D. H. (1979). Effects of an experimental increase in prey abundance upon the reproductive rates of two orb-weaving spider species (Araneae: Araneidae). Oecologia 41, 289–300.
| Effects of an experimental increase in prey abundance upon the reproductive rates of two orb-weaving spider species (Araneae: Araneidae).Crossref | GoogleScholarGoogle Scholar |
Wise, D. H. (1993). Spiders in Ecological Webs. Cambridge: Cambridge University Press.
Yáñez, M., and Floater, G. (2000). Spatial distribution and habitat preference of the endangered tarantula, Brachypelma klassi (Araneae: Theraphosidae) in Mexico. Biodiversity and Conservation 9, 795–810.
| Spatial distribution and habitat preference of the endangered tarantula, Brachypelma klassi (Araneae: Theraphosidae) in Mexico.Crossref | GoogleScholarGoogle Scholar |
Zalba, S. M., and Cozzani, N. C. (2004). The impact of feral horses on grassland bird communities in Argentina. Animal Conservation 7, 35–44.
| The impact of feral horses on grassland bird communities in Argentina.Crossref | GoogleScholarGoogle Scholar |