Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Tigers (Panthera tigris) respond to fine spatial-scale habitat factors: occupancy-based habitat association of tigers in Chitwan National Park, Nepal

Hemanta Kafley A B F , Matthew E. Gompper A , Mandira Sharma C , Babu R. Lamichane D and Rupak Maharjan E
+ Author Affiliations
- Author Affiliations

A Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, MO 65211, USA.

B Nepal Nature Foundation, Koteshwor, Kathmandu-34, Nepal.

C Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO 65101, USA.

D National Trust for Nature Conservation, Biodiversity Conservation Center, Chitwan, Nepal.

E Department of National Parks and Wildlife Conservation, Babarmahal, Kathmandu, Nepal.

F Corresponding author. Email: hkc5b@mail.missouri.edu

Wildlife Research 43(5) 398-410 https://doi.org/10.1071/WR16012
Submitted: 18 January 2016  Accepted: 27 June 2016   Published: 8 August 2016

Abstract

Context: Source populations of many large carnivores such as tigers (Panthera tigris) are confined within small wildlife refuges in human-dominated landscapes. Appropriate management of these populations may warrant understanding fine-scale use of habitat.

Aims: The aim of the present study is to understand the fine spatial-scale habitat associations of tigers in Chitwan National Park, Nepal.

Methods: We conducted camera-trap surveys across the park and applied an occupancy modelling approach to assess the probability of tiger detection and occurrence as a function of fine-scale habitat covariates.

Results: Tiger detection probability as a function of fine-scale habitat covariates was ≤0.20 compared with that of a constant detection model. Detectability patterns were best explained by models incorporating the effect of prey, slope and landcover type. Similarly, the best occupancy model incorporating the detection probability included prey, landcover type, water and slope. Tiger occurrence patterns were positively associated with prey availability and certain landcover types such as grasslands. Contrary to expectation, occurrence probability decreased further from human settlements. However, as expected, the occurrence of tigers was higher in proximity to water sources.

Conclusions: Both tiger detection and occurrence are influenced by fine-scale habitat factors, including prey availability. In small protected areas, individuals may persist at high population densities by intensively focusing their activity on small portions of their home ranges.

Implications: Our study provided insight into the fine spatial-scale occurrence probability of tigers, and thereby aids in developing appropriate habitat management strategies at the protected-area level. Our approach is broadly applicable to the robust assessment of fine-scale wildlife–habitat associations of many wide-ranging species that are ecologically ‘confined’ in smaller protected areas.

Additional keywords: camera trapping, fine-scale habitat association, occupancy modelling.


References

Barber-Meyer, S., Jnawali, S. R., Karki, J. B., Khanal, P., Lohani, S., Long, B., MacKenzie, D. I., Pandav, B., Pradhan, N. M. B., and Shrestha, R. (2013). Influence of prey depletion and human disturbance on tiger occupancy in Nepal. Journal of Zoology 289, 10–18.
Influence of prey depletion and human disturbance on tiger occupancy in Nepal.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2002) ‘Model Selection and Multi-model Inference: a Practical Information-theoretic Approach.’ 2nd edn. (Springer-Verlag: New York.)

Burton, A. C., Sam, M. K., Balangtaa, C., and Brashares, J. S. (2012). Hierarchical multi-species modeling of carnivore responses to hunting, habitat and prey in a West African protected area. PLoS One 7, e38007.
Hierarchical multi-species modeling of carnivore responses to hunting, habitat and prey in a West African protected area.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xot12qtrs%3D&md5=59d48d934a1fc90b4be22dca9a765530CAS | 22666433PubMed |

Carbone, C., and Gittleman, J. L. (2002). A common rule for the scaling of carnivore density. Science 295, 2273–2276.
A common rule for the scaling of carnivore density.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitlKmtLs%3D&md5=3c9ea6ebe1eefbdc62260b5df4c91ce2CAS | 11910114PubMed |

Carter, N. H., Shrestha, B. K., Karki, J. B., Pradhan, N. M. B., and Liu, J. (2012). Coexistence between wildlife and humans at fine spatial scales. Proceedings of the National Academy of Sciences, USA 109, 15360–15365.
Coexistence between wildlife and humans at fine spatial scales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVyjtLrJ&md5=0b2ef31d87080ac29fc8e74202c258dfCAS |

Carter, N. H., Gurung, B., Viña, A., Campa III, H., Karki, J. B., and Liu, J. (2013). Assessing spatiotemporal changes in tiger habitat across different land management regimes. Ecosphere 4, Article 124.

Crooks, K. R., Burdett, C. L., Theobald, D. M., Rondinini, C., and Boitani, L. (2011). Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philosophical Transactions of the Royal Society B. 366, 2642–2651.
Global patterns of fragmentation and connectivity of mammalian carnivore habitat.Crossref | GoogleScholarGoogle Scholar |

DeFries, R., Hansen, A., Newton, A. C., and Hansen, M. C. (2005). Increasing isolation of protected areas in tropical forests over the past twenty years. Ecological Applications 15, 19–26.
Increasing isolation of protected areas in tropical forests over the past twenty years.Crossref | GoogleScholarGoogle Scholar |

DeFries, R., Hansen, A., Turner, B. L., Reid, R., and Liu, J. (2007). Land use change around protected areas: management to balance human needs and ecological function. Ecological Applications 17, 1031–1038.
Land use change around protected areas: management to balance human needs and ecological function.Crossref | GoogleScholarGoogle Scholar | 17555216PubMed |

Dhakal, M., Karki (Thapa), M., Jnawali, S. R., Subedi, N., Pradhan, N. M. B., Malla, S., Lamichane, B. R., Pokharel, C. P., Thapa, G. J., Oglethorpe, J., Subba, S. A., Bajracharya, P. R., and Yadav, H. (2014). ‘Status of Tigers and Prey in Nepal.’ (Department of National Parks and Wildlife Conservation (DNPWC): Kathmandu.)

Dinerstein, E. (2003). ‘The Return of the Unicorns: the Natural History and Conservation of the Greater One-horned Rhinoceros.’ (Columbia University Press: New York.)

Dinerstein, E. (2006). ‘Setting Priorities for the Conservation and Recovery of Wild Tigers: 2005–2015.’ (WWF, WCS, Smithsonian, and NFWF–STF: Washington, DC.)

Eisenberg, J. F., and Seidensticker, J. (1976). Ungulates in southern Asia: a consideration of biomass estimates for selected habitats. Biological Conservation 10, 293–308.
Ungulates in southern Asia: a consideration of biomass estimates for selected habitats.Crossref | GoogleScholarGoogle Scholar |

Gu, W., and Swihart, R. K. (2004). Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biological Conservation 116, 195–203.
Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models.Crossref | GoogleScholarGoogle Scholar |

Harihar, A., and Pandav, B. (2012). Influence of connectivity, wild prey and disturbance on occupancy of tigers in the human-dominated western Terai Arc Landscape. PLoS One 7, e40105.
Influence of connectivity, wild prey and disturbance on occupancy of tigers in the human-dominated western Terai Arc Landscape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVarsLrO&md5=5d2fcf3cb4d59e6a6957a9480e570e22CAS | 22792220PubMed |

Hines, J. E. (2006). ‘PRESENCE – Software to Estimate Patch Occupancy and Related Parameters.’ (USGS–PWRC:.)

Hirzel, A., Hausser, J., Chessel, D., and Perrin, N. (2002). Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83, 2027–2036.
Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data?Crossref | GoogleScholarGoogle Scholar |

Hojnowski, C. E., Miquelle, D. G., Myslenkov, A. I., Strindberg, S., Smirnov, E. N., and Goodrich, J. M. (2012). Why do Amur tigers maintain exclusive home ranges? Relating ungulate seasonal movements to tiger spatial organization in the Russian Far East. Journal of Zoology 287, 276–282.
Why do Amur tigers maintain exclusive home ranges? Relating ungulate seasonal movements to tiger spatial organization in the Russian Far East.Crossref | GoogleScholarGoogle Scholar |

Jackson, R. M., Roe, J. D., Wangchuk, R., and Hunter, D. O. (2006). Estimating snow leopard population abundance using photography and capture-recapture techniques. Wildlife Society Bulletin 34, 772–781.

Jhala, Y. V., Gopal, R., and Qureshi, Q. (2010). ‘Status of Tigers, Co-predators and Prey in India.’ (National Tiger Conservation Authority, Government of India, New Delhi; and Wildlife Institute of India: Dehradun, India.)

Kafley, H., Khadka, M., and Sharma, M. (2009). Habitat evaluation and suitability modeling of Rhinoceros unicornis in Chitwan National Park, Nepal: a geospatial approach. In ‘Proceedings of the XIII World Forestry Congress, Buenos Aires, Argentina.’

Kafley, H., Gompper, M. E., Khadka, M., Sharma, M., Maharjan, R., and Thapaliya, B. P. (2015). Analysis of rhino (Rhinoceros unicornis) population viability in Nepal: impact assessment of antipoaching and translocation strategies. Zoology and Ecology 25, 288–294.
Analysis of rhino (Rhinoceros unicornis) population viability in Nepal: impact assessment of antipoaching and translocation strategies.Crossref | GoogleScholarGoogle Scholar |

Karanth, K. U., and Nichols, J. D. (1998). Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 2852–2862.
Estimation of tiger densities in India using photographic captures and recaptures.Crossref | GoogleScholarGoogle Scholar |

Karanth, K. U., and Stith, B. M. (1999). Prey depletion as a critical determinant of tiger population viability. In ‘Riding the Tiger: Tiger Conservation in Human-dominated Landscapes’. (Eds J. Seidensticker, S. Christie and P. Jackson) pp. 100–113. (Cambridge University Press: Cambridge, UK.)

Karanth, K. U., and Sunquist, M. E. (2000). Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India. Journal of Zoology 250, 255–265.
Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarahole, India.Crossref | GoogleScholarGoogle Scholar |

Karanth, K. U., Chundawat, R. S., Nichols, J. D., and Kumar, N. (2004a). Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture–recapture sampling. Animal Conservation 7, 285–290.
Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture–recapture sampling.Crossref | GoogleScholarGoogle Scholar |

Karanth, K. U., Nichols, J. D., Kumar, N. S., Link, W. A., and Hines, J. E. (2004b). Tigers and their prey: predicting carnivore densities from prey abundance. Proceedings of the National Academy of Sciences, USA 101, 4854–4858.
Tigers and their prey: predicting carnivore densities from prey abundance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFCju70%3D&md5=145f064aa2f5a2137ff2296b58581f82CAS |

Karanth, K. U., Nichols, J. D., Kumar, N. S., and Hines, J. E. (2006). Assessing tiger population dynamics using photographic capture–recapture sampling. Ecology 87, 2925–2937.
Assessing tiger population dynamics using photographic capture–recapture sampling.Crossref | GoogleScholarGoogle Scholar | 17168036PubMed |

Karanth, K. U., Gopalaswamy, A. M., Kumar, N. S., Vaidyanathan, S., Nichols, J. D., and MacKenzie, D. I. (2011). Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys. Journal of Applied Ecology 48, 1048–1056.
Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys.Crossref | GoogleScholarGoogle Scholar |

Karki, J. B., Pandav, B., Jnawali, S. R., Shrestha, R., Pradhan, N. M. B., Lamichane, B. R., Khanal, P., Subedi, N., and Jhala, Y. V. (2015). Estimating the abundance of Nepal’s largest population of tigers Panthera tigris. Oryx 49, 150–156.

Kendall, W. L. (1999). Robustness of closed capture-recapture methods to violations of the closure assumption. Ecology 80, 2517–2525.

Lehmkuhl, J. F. (1989). The ecology of a south-Asian tall-grass community. Ph.D. Thesis, University of Washington, Seattle, WA.

Lehmkuhl, J. F. (1994). A classification of subtropical riverine grassland and forest in Chitwan National Park, Nepal. Vegetatio 111, 29–43.

Lillesand, T. M., Kiefer, R. W., and Chipman, J. W. (2004). ‘Remote Sensing and Image Interpretation.’ (John Wiley & Sons.)

Linkie, M., Chapron, G., Martyr, D. J., Holden, J., and Leader‐Williams, N. (2006). Assessing the viability of tiger subpopulations in a fragmented landscape. Journal of Applied Ecology 43, 576–586.
Assessing the viability of tiger subpopulations in a fragmented landscape.Crossref | GoogleScholarGoogle Scholar |

Linkie, M., Guillera‐Arroita, G., Smith, J., and Rayan, D. M. (2010). Monitoring tigers with confidence. Integrative Zoology 5, 342–350.
Monitoring tigers with confidence.Crossref | GoogleScholarGoogle Scholar | 21392352PubMed |

Linnell, J. D., Swenson, J. E., and Andersen, R. (2000). Conservation of biodiversity in Scandinavian boreal forests: large carnivores as flagships, umbrellas, indicators, or keystones? Biodiversity and Conservation 9, 857–868.
Conservation of biodiversity in Scandinavian boreal forests: large carnivores as flagships, umbrellas, indicators, or keystones?Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I. (2006). Modeling the probability of resource use: the effect of, and dealing with, detecting a species imperfectly. The Journal of Wildlife Management 70, 367–374.
Modeling the probability of resource use: the effect of, and dealing with, detecting a species imperfectly.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
Estimating site occupancy rates when detection probabilities are less than one.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Bailey, L. L., and Nichols, J. (2004). Investigating species co‐occurrence patterns when species are detected imperfectly. Journal of Animal Ecology 73, 546–555.
Investigating species co‐occurrence patterns when species are detected imperfectly.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Sutton, N., Kawanishi, K., and Bailey, L. L. (2005). Improving inferences in population studies of rare species that are detected imperfectly. Ecology 86, 1101–1113.
Improving inferences in population studies of rare species that are detected imperfectly.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., and Hines, J. E. (2006). ‘Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence.’ (Elsevier/Academic Press: Burlington, MA.)

Manly, B. F. J., McDonald, L. L., Thomas, D. L., McDonald, T. L., and Erickson, W. P. (2002). ‘Resource Selection by Animals: Statistical Analysis and Design for Field Studies.’ 2 edn. (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Miquelle, D. G., Smirnov, E. N., Merrill, T. W., Myslenkov, A. E., Quigley, H. B., Hornocker, M. G., and Schleyer, B. (1999). Hierarchical spatial analysis of Amur tiger relationships to habitat and prey. In ‘Riding the Tiger: Tiger Conservation in Human-dominated Landscapes’. (Eds J. Seidensticker, S. Christie and P. Jackson.) pp. 71–99. (Cambridge University Press: Cambridge, UK.)

Nellemann, C., Støen, O.-G., Kindberg, J., Swenson, J. E., Vistnes, I., Ericsson, G., Katajisto, J., Kaltenborn, B. P., Martin, J., and Ordiz, A. (2007). Terrain use by an expanding brown bear population in relation to age, recreational resorts and human settlements. Biological Conservation 138, 157–165.
Terrain use by an expanding brown bear population in relation to age, recreational resorts and human settlements.Crossref | GoogleScholarGoogle Scholar |

O’Brien, T. G., Kinnaird, M. F., and Wibisono, H. T. (2003). Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation 6, 131–139.
Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape.Crossref | GoogleScholarGoogle Scholar |

O’Connell, A. F., Talancy, N. W., Bailey, L. L., Sauer, J. R., Cook, R., and Gilbert, A. T. (2006). Estimating site occupancy and detection probability parameters for meso-and large mammals in a coastal ecosystem. The Journal of Wildlife Management 70, 1625–1633.
Estimating site occupancy and detection probability parameters for meso-and large mammals in a coastal ecosystem.Crossref | GoogleScholarGoogle Scholar |

O’Connell, A. F., Nichols, J. D., and Karanth, K. U. (2011). Introduction. In ‘Camera Traps in Animal Ecology: Methods and Analyses’. (Eds A. F. O’Connell, J. D. Nichols and K. U. Karanth.) pp. 1–8. (Springer: Japan.)

Peet, N., Watkinson, A., Bell, D., and Kattel, B. (1999). Plant diversity in the threatened sub-tropical grasslands of Nepal. Biological Conservation 88, 193–206.
Plant diversity in the threatened sub-tropical grasslands of Nepal.Crossref | GoogleScholarGoogle Scholar |

Schaller, G. B. (2009) ‘The Deer and the Tiger.’ (University of Chicago Press: Chicago, IL.)

Scott, J. M., Heglund, P. J., Morrison, M. L., Haufler, J. B., Raphael, M. G., Wall, W. A., and Samson, F. B. (2002). ‘Predicting Species Occurrences: Issues of Accuracy and Scale.’ (Island Press: Washington, DC.)

Seidensticker, J. (2010). Saving wild tigers: a case study in biodiversity loss and challenges to be met for recovery beyond 2010. Integrative Zoology 5, 285–299.
Saving wild tigers: a case study in biodiversity loss and challenges to be met for recovery beyond 2010.Crossref | GoogleScholarGoogle Scholar | 21392347PubMed |

Seidensticker, J., Dinerstein, E., Goyal, S. P., Gurung, B., Harihar, A., Johnsingh, A., Manandhar, A., McDougal, C., Pandav, B., and Shrestha, M. (2010). Tiger range collapse and recovery at the base of the Himalayas. In ‘Biology and Conservation of Wild Felids’. (Eds D. Macdonald and A. Loveridge.) pp. 305–324. (Oxford University Press: Oxford, UK.)

Shrestha, M. K. (2004). Relative ungulate abundance in a fragmented landscape: implications for tiger conservation. Ph.D. Thesis, University of Minnesota, St Paul, MN.

Singh, N., Grachev, I. A., Bekenov, A., and Milner-Gulland, E. (2010). Saiga antelope calving site selection is increasingly driven by human disturbance. Biological Conservation 143, 1770–1779.
Saiga antelope calving site selection is increasingly driven by human disturbance.Crossref | GoogleScholarGoogle Scholar |

Smith, J. L. D., McDougal, C., Ahearn, S. C., Joshi, A., and Conforti, K. (1999). Metapopulation structure of tigers in Nepal. In ‘Riding the Tiger: Tiger Conservation in Human-dominated Landscapes’. (Eds J. Seidensticker, S. Christie and P. Jackson.) pp. 176–189. (Cambridge University Press: Cambridge, UK.)

Stein, M. L. (1999). ‘Interpolation of Spatial Data: Some Theory for Kriging.’ (Springer-Verlag: New York.)

Sunarto, S., Kelly, M. J., Parakkasi, K., Klenzendorf, S., Septayuda, E., and Kurniawan, H. (2012). Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes. PLoS One 7, e30859.
Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFemt78%3D&md5=29cbc7d5b71ec2ada514581de77fbf02CAS | 22292063PubMed |

Sunquist, M. E. (1981). ‘The Social Organization of Tigers (Panthera tigris) in Royal Chitawan National Park, Nepal.’ (Smithsonian Institution Press: Washington, DC.)

Sunquist, M., Karanth, K. U., and Sunquist, F. (1999). Ecology, behaviour and resilience of the tiger and its conservation needs. In ‘Riding the Tiger: Tiger Conservation in Human-dominated Landscapes’. (Eds J. Seidensticker, S. Christie and P. Jackson) pp. 5–18. (Cambridge University Press: Cambridge, UK.)

Tempa, T., Hebblewhite, M., Scott Mills, L., Tshewang, R., Norbu, N., Wangchuk, T., Nidup, T., Dendup, P., Wangchuk, D., Wangdi, Y., and Dorji, T. (2013). Royal Manas National Park, Bhutan: a hot spot for wild felids. Oryx 47, 207–210.
Royal Manas National Park, Bhutan: a hot spot for wild felids.Crossref | GoogleScholarGoogle Scholar |

Thapar, V., and Rathore, F. S. (1989). ‘Tigers: the Secret Life.’ (Elm Tree Books: London.)

Thorn, M., Scott, D. M., Green, M., Bateman, P. W., and Cameron, E. Z. (2009). Estimating brown hyaena occupancy using baited camera traps. South African Journal of Wildlife Research 39, 1–10.
Estimating brown hyaena occupancy using baited camera traps.Crossref | GoogleScholarGoogle Scholar |

Tyre, A. J., Possingham, H. P., and Lindenmayer, D. B. (2001). Inferring process from pattern: can territory occupancy provide information about life history parameters? Ecological Applications 11, 1722–1737.
Inferring process from pattern: can territory occupancy provide information about life history parameters?Crossref | GoogleScholarGoogle Scholar |

Verner, J., Morrison, M. L., and Ralph, C. J. (1986). ‘Wildlife 2000: Modeling Habitat Relationships of Terrestrial Vertebrates.’ (University of Wisconsin Press: Madison, WI.)

Walston, J., Robinson, J. G., Bennett, E. L., Breitenmoser, U., da Fonseca, G. A., Goodrich, J., Gumal, M., Hunter, L., Johnson, A., and Karanth, K. U. (2010). Bringing the tiger back from the brink: the six percent solution. PLoS Biology 8, e1000485.
Bringing the tiger back from the brink: the six percent solution.Crossref | GoogleScholarGoogle Scholar | 20856904PubMed |

Wang, S. W., and Macdonald, D. W. (2009). The use of camera traps for estimating tiger and leopard populations in the high altitude mountains of Bhutan. Biological Conservation 142, 606–613.
The use of camera traps for estimating tiger and leopard populations in the high altitude mountains of Bhutan.Crossref | GoogleScholarGoogle Scholar |

Wikramanayake, E., Dinerstein, E., Seidensticker, J., Lumpkin, S., Pandav, B., Shrestha, M., Mishra, H., Ballou, J., Johnsingh, A., and Chestin, I. (2011). A landscape‐based conservation strategy to double the wild tiger population. Conservation Letters 4, 219–227.
A landscape‐based conservation strategy to double the wild tiger population.Crossref | GoogleScholarGoogle Scholar |

Wong, W. M., and Linkie, M. (2013). Managing sun bears in a changing tropical landscape. Diversity & Distributions 19, 700–709.
Managing sun bears in a changing tropical landscape.Crossref | GoogleScholarGoogle Scholar |

Woodroffe, R., and Ginsberg, J. R. (1998). Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128.
Edge effects and the extinction of populations inside protected areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1Glu7g%3D&md5=39f57f305b5f16d195374ad2df4f91f1CAS | 9641920PubMed |

Zeng, H., Sui, D. Z., and Wu, X. B. (2005). Human disturbances on landscapes in protected areas: a case study of the Wolong Nature Reserve. Ecological Research 20, 487–496.
Human disturbances on landscapes in protected areas: a case study of the Wolong Nature Reserve.Crossref | GoogleScholarGoogle Scholar |