The relationship between physiological stress and wildlife disease: consequences for health and conservation
Stephanie Hing A C , Edward J. Narayan B , R. C. Andrew Thompson A and Stephanie S. Godfrey AA School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
B School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
C Corresponding author. Email: S.Hing@murdoch.edu.au
Wildlife Research 43(1) 51-60 https://doi.org/10.1071/WR15183
Submitted: 22 September 2015 Accepted: 7 February 2016 Published: 30 March 2016
Abstract
Wildlife populations are under increasing pressure from a variety of threatening processes, ranging from climate change to habitat loss, that can incite a physiological stress response. The stress response influences immune function, with potential consequences for patterns of infection and transmission of disease among and within wildlife, domesticated animals and humans. This is concerning because stress may exacerbate the impact of disease on species vulnerable to extinction, with consequences for biodiversity conservation globally. Furthermore, stress may shape the role of wildlife in the spread of emerging infectious diseases (EID) such as Hendra virus (HeV) and Ebola virus. However, we still have a limited understanding of the influence of physiological stress on infectious disease in wildlife. We highlight key reasons why an improved understanding of the relationship between stress and wildlife disease could benefit conservation, and animal and public health, and discuss approaches for future investigation. In particular, we recommend that increased attention be given to the influence of anthropogenic stressors including climate change, habitat loss and management interventions on disease dynamics in wildlife populations.
Additional keyword: physiology.
References
Aapanius, V. (1998). Stress and immune defense. Advances in the Study of Behavior 27, 133–153.| Stress and immune defense.Crossref | GoogleScholarGoogle Scholar |
Adamo, S. (2012). The effects of the stress response on immune function in invertebrates : an evolutionary perspective on an ancient connection. Hormones and Behavior 62, 324–330.
| The effects of the stress response on immune function in invertebrates : an evolutionary perspective on an ancient connection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVWnu7jI&md5=9b05c9bc083a36c472e37e80c1a13593CAS | 22381405PubMed |
Agarwal, S. K., and Marshall, G. D. (2001). Stress effects on immunity and its application to clinical immunology. Clinical and Experimental Allergy 31, 25–31.
| Stress effects on immunity and its application to clinical immunology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mzit1WrsQ%3D%3D&md5=66105f52912eccbc6e958467b81a1a0cCAS | 11167947PubMed |
Aguirre, A. A., and Tabor, G. M. (2008). Global factors driving emerging infectious diseases. Annals of the New York Academy of Sciences 1149, 1–3.
| Global factors driving emerging infectious diseases.Crossref | GoogleScholarGoogle Scholar | 19120161PubMed |
Aguirre, A. A., Balazs, G. H., Spraker, T. R., and Gross, T. S. (1995). Adrenal and hematological responses to stress in juvenile green turtles (Chelonia mydas) with and without fibropapillomas. Physiological Zoology 68, 831–854.
| Adrenal and hematological responses to stress in juvenile green turtles (Chelonia mydas) with and without fibropapillomas.Crossref | GoogleScholarGoogle Scholar |
Anderson, P. a., Berzins, I. K., Fogarty, F., Hamlin, H. J., and Guillette, L. J. (2011). Sound, stress, and seahorses: the consequences of a noisy environment to animal health. Aquaculture 311, 129–138.
| Sound, stress, and seahorses: the consequences of a noisy environment to animal health.Crossref | GoogleScholarGoogle Scholar |
Bejder, L., Samuels, A., Whitehead, H., Finn, H., and Allen, S. (2009). Impact assessment research: use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. Marine Ecology Progress Series 395, 177–185.
| Impact assessment research: use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli.Crossref | GoogleScholarGoogle Scholar |
Bekenov, A. B., Grachev, I. A., and Milner-Gulland, E. J. (1998). The ecology and management of the saiga antelope in Kazakhstan. Mammal Review 28, 1–52.
| The ecology and management of the saiga antelope in Kazakhstan.Crossref | GoogleScholarGoogle Scholar |
Besedovsky, H. O., and del Rey, A. (1996). Immune-neuro-endocrine interactions: facts and hypotheses. Endocrine Reviews 17, 64–102.
| Immune-neuro-endocrine interactions: facts and hypotheses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhslymtL4%3D&md5=bb11aa931bef7bac52600d542442de95CAS | 8641224PubMed |
Biondi, M., and Zannino, L.-G. (1997). Psychological stress, neuroimmunomodulation, and susceptibility to infectious diseases in animals and man: a review. Psychotherapy and Psychosomatics 66, 3–26.
| Psychological stress, neuroimmunomodulation, and susceptibility to infectious diseases in animals and man: a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s7kvF2itQ%3D%3D&md5=f801532486a4a678c90f8de566b61fe9CAS | 8996711PubMed |
Blaustein, A. R., Gervasi, S. S., Johnson, P. T. J., Hoverman, J. T., Belden, L. K., Bradley, P. W., and Xie, G. Y. (2012). Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 367, 1688–1707.
| Ecophysiology meets conservation: understanding the role of disease in amphibian population declines.Crossref | GoogleScholarGoogle Scholar | 22566676PubMed |
Bortolotti, G. R., Marchant, T. A., Blas, J., and German, T. (2008). Corticosterone in feathers is a long-term, integrated measure of avian stress physiology. Functional Ecology 22, 494–500.
| Corticosterone in feathers is a long-term, integrated measure of avian stress physiology.Crossref | GoogleScholarGoogle Scholar |
Bradley, C. A., and Altizer, S. (2007). Urbanization and the ecology of wildlife diseases. Trends in Ecology & Evolution 22, 95–102.
| Urbanization and the ecology of wildlife diseases.Crossref | GoogleScholarGoogle Scholar |
Brearley, G., Rhodes, J., Bradley, A., Baxter, G., Seabrook, L., Lunney, D., Liu, Y., and McAlpine, C. (2013). Wildlife disease prevalence in human-modified landscapes. Biological Reviews of the Cambridge Philosophical Society 88, 427–442.
| Wildlife disease prevalence in human-modified landscapes.Crossref | GoogleScholarGoogle Scholar | 23279314PubMed |
Broom, D. M. (2003). Transport stress in cattle and sheep with details of physiological, ethological and other indicators. Deutsche Tierarztliche Wochenschrift 110, 83–89.
| 1:CAS:528:DC%2BD3sXksFeit74%3D&md5=d9442b9195a56a3abd35b59d74c3f410CAS | 12731104PubMed |
Busch, D. S., and Hayward, L. S. (2009). Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biological Conservation 142, 2844–2853.
| Stress in a conservation context: a discussion of glucocorticoid actions and how levels change with conservation-relevant variables.Crossref | GoogleScholarGoogle Scholar |
Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V., and Schountz, T. (2006). Bats: important reservoir hosts of emerging viruses. Clinical Microbiology Reviews 19, 531–545.
| Bats: important reservoir hosts of emerging viruses.Crossref | GoogleScholarGoogle Scholar | 16847084PubMed |
Carter, S. P., Delahay, R. J., Smith, G. C., Macdonald, D. W., Riordan, P., Etherington, T. R., Pimley, E. R., Walker, N. J., and Cheeseman, C. L. (2007). Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proceedings of the Royal Society of London. Series B, Biological Sciences 274, 2769–2777.
| Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology.Crossref | GoogleScholarGoogle Scholar |
Chapman, C. A., Wasserman, M. D., Gillespie, T. R., Speirs, M. L., Lawes, M. J., Saj, T. L., and Ziegler, T. E. (2006). Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology 131, 525–534.
| Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments?Crossref | GoogleScholarGoogle Scholar | 16958077PubMed |
Chester, A. C. (1992). Psychological stress and the common cold. The New England Journal of Medicine 326, 645–646.
| 1:STN:280:DyaK387jtFSqsQ%3D%3D&md5=abfc025309505a2d363d89fb59e19eb3CAS | 1734261PubMed |
Clough, D., Heistermann, M., and Kappeler, P. M. (2010). Host intrinsic determinants and potential consequences of parasite infection in free-ranging red-fronted lemurs (Eulemur fulvus rufus). American Journal of Physical Anthropology 142, 441–452.
| Host intrinsic determinants and potential consequences of parasite infection in free-ranging red-fronted lemurs (Eulemur fulvus rufus).Crossref | GoogleScholarGoogle Scholar | 20091843PubMed |
Cohen, N., and Kinney, K. (2007). Exploring the phylogenetic history of neural-immune system interactions: an update. In ‘Psychoneuroimmunology’. (Ed. R. Ader.) pp. 1–38. (Elsevier: Burlington, MA.)
Cooke, S. J., Sack, L., Franklin, C. E., Farrell, A. P., Beardall, J., Wikelski, M., and Chown, S. L. (2013). What is conservation physiology? Perspectives on an increasingly integrated and essential science. Conservation Physiology 1, cot001.
| What is conservation physiology? Perspectives on an increasingly integrated and essential science.Crossref | GoogleScholarGoogle Scholar |
Cross, M. L., Swale, E., Young, G., and Mackintosh, C. (1998). Effect of field capture on the measurement of cellular immune responses in wild ferrets (Mustela furo), vectors of bovine tuberculosis in New Zealand. Veterinary Research 30, 401–410.
Cryan, P. M., Meteyer, C. U., Boyles, J. G., and Blehert, D. S. (2010). Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biology 8, 135.
| Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology.Crossref | GoogleScholarGoogle Scholar | 21070683PubMed |
Dantzer, B., Fletcher, Q. E., Boonstra, R., and Sheriff, M. J. (2014). Measures of physiological stress: a transparent or opaque window into the status, management and conservation of species? Conservation Physiology 2, cou023.
| Measures of physiological stress: a transparent or opaque window into the status, management and conservation of species?Crossref | GoogleScholarGoogle Scholar |
Daszak, P., Cunningham, A. A., and Hyatt, A. D. (2000). Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443–449.
| Emerging infectious diseases of wildlife: threats to biodiversity and human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntl2jtw%3D%3D&md5=716f99b16fd6a6d0fd8198fe3c30c296CAS | 10642539PubMed |
Davies, N. A., Gramotnev, G., McAlpine, C., Seabrook, L., Baxter, G., Lunney, D., Rhodes, J. R., and Bradley, A. (2013). Physiological stress in koala populations near the arid edge of their distribution. PLoS One 8, e79136.
| Physiological stress in koala populations near the arid edge of their distribution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsl2jtb%2FP&md5=f9fe33a93d33bcc50d4134fa1ce9fd9aCAS | 24265749PubMed |
Davies, N., Gramotnev, G., Seabrook, L., McAlpine, C., Baxter, G., Lunney, D., and Bradley, A. (2014). Climate-driven changes in diet composition and physiological stress in an arboreal folivore at the semi-arid edge of its distribution. Biological Conservation 172, 80–88.
| Climate-driven changes in diet composition and physiological stress in an arboreal folivore at the semi-arid edge of its distribution.Crossref | GoogleScholarGoogle Scholar |
Daynes, R. A., Araneo, B. A., Hennebold, J., Enioutina, E., and Mu, H. H. (1995). Steroids as regulators of the mammalian immune response. The Journal of Investigative Dermatology 105, 14S–19S.
| Steroids as regulators of the mammalian immune response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnsFKntbs%3D&md5=db2cef44af764a3fc2c1259e20631e2bCAS | 7615991PubMed |
Degeling, C., and Kerridge, I. (2013). Hendra in the news: public policy meets public morality in times of zoonotic uncertainty. Social Science & Medicine 82, 156–163.
| Hendra in the news: public policy meets public morality in times of zoonotic uncertainty.Crossref | GoogleScholarGoogle Scholar |
Dhabhar, F. S., and McEwen, B. S. (1997). Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain, Behavior, and Immunity 11, 286–306.
| Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7ntl2qtg%3D%3D&md5=0417a2be5cef52bc99f4ec1a2e3e88b7CAS | 9512816PubMed |
Dickens, M. J., Delehanty, D. J., and Michael Romero, L. (2010). Stress: an inevitable component of animal translocation. Biological Conservation 143, 1329–1341.
| Stress: an inevitable component of animal translocation.Crossref | GoogleScholarGoogle Scholar |
Dietrich, M., Wilkinson, D. A., Benlali, A., Lagadec, E., Ramasindrazana, B., Dellagi, K., and Tortosa, P. (2015). Leptospira and paramyxovirus infection dynamics in a bat maternity enlightens pathogen maintenance in wildlife. Environmental Microbiology 17, 4280–4289.
| Leptospira and paramyxovirus infection dynamics in a bat maternity enlightens pathogen maintenance in wildlife.Crossref | GoogleScholarGoogle Scholar | 25580582PubMed |
Dowle, M., Webster, K. N., and Deane, E. (2013). Faecal glucocorticoid metabolite concentrations in the free-ranging bandicoots (Perameles nasuta and Isoodon obesulus) of northern Sydney. Australian Mammalogy 35, 1–7.
| Faecal glucocorticoid metabolite concentrations in the free-ranging bandicoots (Perameles nasuta and Isoodon obesulus) of northern Sydney.Crossref | GoogleScholarGoogle Scholar |
Dunlap, K. D., and Schall, J. J. (1995). Hormonal alterations and reproductive inhibition in male fence lizards (Sceloporus occidentalis) Infected with the malarial parasite Plasmodium mexicanum. Physiological Zoology 68, 608–621.
| Hormonal alterations and reproductive inhibition in male fence lizards (Sceloporus occidentalis) Infected with the malarial parasite Plasmodium mexicanum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnslWisro%3D&md5=90ece316028c1b78f945dda8974d4fbbCAS |
Dunn, A. J. (2007). Infection as a stressor: a cytokine-mediated activation of the hypothalamo–pituitary–adrenal axis? In ‘Ciba Foundation Symposium 172. Corticotropin-releasing Factor’. (Ed. K. Ackrill.) pp. 226–242. (John Wiley & Sons: Chichester, UK) Available at http://onlinelibrary.wiley.com/doi/10.1002/9780470514368.ch11/summary [Verified February 2016].
Fenton, M., Davison, M., Kunz, T., McCracken, G., Racey, P., Tuttle, M., and Dobson, A. (2006). Linking bats to emerging diseases. Science 311, 1098c–1099c.
| Linking bats to emerging diseases.Crossref | GoogleScholarGoogle Scholar |
Fey, S. B., Siepielski, A. M., Nusslé, S., Cervantes-Yoshida, K., Hwan, J. L., Huber, E. R., Fey, M. J., Catenazzi, A., and Carlson, S. M. (2015). Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proceedings of the National Academy of Sciences, USA 112, 1083–1088.
| Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXmtV2rug%3D%3D&md5=2f1a71b42eeb1925162f8f0b7a5662f3CAS |
Field, H. E., Mackenzie, P. J. S., and Daszak, P. (2007). Henipaviruses: emerging paramyxoviruses associated with fruit bats. In ‘Wildlife and Emerging Zoonotic Diseases: the Biology, Circumstances and Consequences of Cross-species Transmission. Current Topics in Microbiology and Immunology’. (Eds J. E. Childs, J. S. Mackenzie and J. A. Richt.) pp. 133–159. (Springer Berlin: Heidelberg, Germany.) Available at http://link.springer.com/chapter/10.1007/978-3-540-70962-6_7
Florens, F. B. V. (2012). Going to bat for an endangered species. Science 336, 1102.
| Going to bat for an endangered species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptlCnu74%3D&md5=5293379a20b97c6f7993386030003c8dCAS |
Gabor, C. R., Fisher, M. C., and Bosch, J. (2013). A non-invasive stress assay shows that tadpole populations infected with Batrachochytrium dendrobatidis have elevated corticosterone levels. PLoS One 8, e56054.
| A non-invasive stress assay shows that tadpole populations infected with Batrachochytrium dendrobatidis have elevated corticosterone levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXjtlClt7s%3D&md5=f5400e857fdbb85b1f2ae863d4a88cdcCAS | 23418508PubMed |
George, S., Smith, T., Cana, P., Coleman, R., and Montgomery, W. (2014). Physiological stress in the Eurasian badger (Meles meles): effects of host, disease and environment. General and Comparative Endocrinology 200, 54–60.
| Physiological stress in the Eurasian badger (Meles meles): effects of host, disease and environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmsFCgsLk%3D&md5=acae5c1fe524eb9a8f4811bab6d27aefCAS | 24607571PubMed |
Geyer, J., Kiefer, I., Kreft, S., Chavez, V., Salafsky, N., Jeltsch, F., and Ibisch, P. L. (2011). Classification of climate-change-induced stresses on biological diversity. Conservation Biology 25, 708–715.
| Classification of climate-change-induced stresses on biological diversity.Crossref | GoogleScholarGoogle Scholar | 21488958PubMed |
Gillespie, T. R., and Chapman, C. A. (2006). Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation. Conservation Biology 20, 441–448.
| Prediction of parasite infection dynamics in primate metapopulations based on attributes of forest fragmentation.Crossref | GoogleScholarGoogle Scholar | 16903105PubMed |
Goldstein, E. J., Millspaugh, J. J., Washburn, B. E., Brundige, G. C., and Raedeke, K. J. (2005). Relationships among fecal lungworm loads, fecal glucocorticoid metabolites, and lamb recruitment in free-ranging Rocky Mountain bighorn sheep. Journal of Wildlife Diseases 41, 416–425.
| Relationships among fecal lungworm loads, fecal glucocorticoid metabolites, and lamb recruitment in free-ranging Rocky Mountain bighorn sheep.Crossref | GoogleScholarGoogle Scholar | 16107677PubMed |
Groseth, A., Feldmann, H., and Strong, J. E. (2007). The ecology of Ebola virus. Trends in Microbiology 15, 408–416.
| The ecology of Ebola virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCisbbI&md5=5146012cbaf32dedb246ab374370fe7dCAS | 17698361PubMed |
Hing, S., Othman, N., Nathan, S. K. S. S., Fox, M., Fisher, M., and Goossens, B. (2013). First parasitological survey of endangered Bornean elephants Elephas maximus borneensis. Endangered Species Research 21, 223–230.
| First parasitological survey of endangered Bornean elephants Elephas maximus borneensis.Crossref | GoogleScholarGoogle Scholar |
Hoberg, E. P., and Brooks, D. R. (2015). Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philosophical Transactions of the Royal Society of London B: Biological Sciences 370, 20130553.
| 25688014PubMed |
Hooper, C., Day, R., Slocombe, R., Handlinger, J., and Benkendorff, K. (2007). Stress and immune responses in abalone: limitations in current knowledge and investigative methods based on other models. Fish & Shellfish Immunology 22, 363–379.
| Stress and immune responses in abalone: limitations in current knowledge and investigative methods based on other models.Crossref | GoogleScholarGoogle Scholar |
Hunt, K. E., Moore, M. J., Rolland, R. M., Kellar, N. M., Hall, A. J., Kershaw, J., Raverty, S. A., Davis, C. E., Yeates, L. C., Fauquier, D. A., Rowles, T. K., and Kraus, S. D. (2013). Overcoming the challenges of studying conservation physiology in large whales: a review of available methods. Conservation Physiology 1, cot006.
| Overcoming the challenges of studying conservation physiology in large whales: a review of available methods.Crossref | GoogleScholarGoogle Scholar |
Hyatt, A. D., Daszak, P., Cunningham, A. A., Field, H., and Gould, A. R. (2004). Henipaviruses: gaps in the knowledge of emergence. EcoHealth 1, 25–38.
| Henipaviruses: gaps in the knowledge of emergence.Crossref | GoogleScholarGoogle Scholar |
Jessop, T. S., Woodford, R., and Symonds, M. R. E. (2013). Macrostress: do large-scale ecological patterns exist in the glucocorticoid stress response of vertebrates? Ed R. Boonstra. Functional Ecology 27, 120–130.
| Macrostress: do large-scale ecological patterns exist in the glucocorticoid stress response of vertebrates? Ed R. Boonstra.Crossref | GoogleScholarGoogle Scholar |
Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., and Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451, 990–993.
| Global trends in emerging infectious diseases.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1ygurg%3D&md5=073809886a01bd2387872fcc1c0256b0CAS | 18288193PubMed |
Kahn, P. F., Guyer, C., and Mendonça, M. T. (2007). Handling, blood sampling and tempory captivity do not affect plasma corticosterone or movement patterns of gopher tortoises (Gopherus polyphemus). Copeia 2007, 614–621.
| Handling, blood sampling and tempory captivity do not affect plasma corticosterone or movement patterns of gopher tortoises (Gopherus polyphemus).Crossref | GoogleScholarGoogle Scholar |
Kindermann, C., Narayan, E. J., and Hero, J.-M. (2012). Urinary corticosterone metabolites and chytridiomycosis disease prevalence in a free-living population of male Stony Creek frogs (Litoria wilcoxii). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 162, 171–176.
| Urinary corticosterone metabolites and chytridiomycosis disease prevalence in a free-living population of male Stony Creek frogs (Litoria wilcoxii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsFOnsbg%3D&md5=8c955f0ab1dfdfd4ebf1950c2ebc4b8eCAS |
Kitaysky, A. S., Piatt, J. F., Hatch, S. A., Kitaiskaia, E. V., Benowitz-Fredericks, Z. M., Shultz, M. T., and Wingfield, J. C. (2010). Food availability and population processes: severity of nutritional stress during reproduction predicts survival of long-lived seabirds. Functional Ecology 24, 625–637.
| Food availability and population processes: severity of nutritional stress during reproduction predicts survival of long-lived seabirds.Crossref | GoogleScholarGoogle Scholar |
Lafferty, K. D., and Kuris, A. M. (1999). How environmental stress affects the impacts of parasites. Limnology and Oceanography 44, 925–931.
| How environmental stress affects the impacts of parasites.Crossref | GoogleScholarGoogle Scholar |
Lane, J. (2006). Can non-invasive glucocorticoid measures be used as reliable indicators of stress in animals? Animal Welfare 15, 331–342.
| 1:CAS:528:DC%2BD28XhtFyrtLjO&md5=0b90dc8665c774cfc34c07d0a20290abCAS |
Laver, P. N., Ganswindt, A., Ganswindt, S. B., and Alexander, K. A. (2012). Non-invasive monitoring of glucocorticoid metabolites in banded mongooses (Mungos mungo) in response to physiological and biological challenges. General and Comparative Endocrinology 179, 178–183.
| Non-invasive monitoring of glucocorticoid metabolites in banded mongooses (Mungos mungo) in response to physiological and biological challenges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsFCnsbjI&md5=3d368c77a0767c7e26fc7e235b87b039CAS | 22926328PubMed |
Liebl, A. L., and Martin, L. B. (2013). Stress hormone receptors change as range expansion progresses in house sparrows. Biology Letters 9, 20130181.
| Stress hormone receptors change as range expansion progresses in house sparrows.Crossref | GoogleScholarGoogle Scholar | 23576781PubMed |
Lindström, K. M., Hawley, D. M., Davis, A. K., and Wikelski, M. (2005). Stress responses and disease in three wintering house finch (Carpodacus mexicanus) populations along a latitudinal gradient. General and Comparative Endocrinology 143, 231–239.
| Stress responses and disease in three wintering house finch (Carpodacus mexicanus) populations along a latitudinal gradient.Crossref | GoogleScholarGoogle Scholar | 15922346PubMed |
Madliger, C. L., and Love, O. P. (2014). The need for a predictive, context-dependent approach to the application of stress hormones in conservation. Conservation Biology 28, 283–287.
| The need for a predictive, context-dependent approach to the application of stress hormones in conservation.Crossref | GoogleScholarGoogle Scholar | 24283988PubMed |
Majchrzak, Y. N., Mastromonaco, G. F., Korver, W., and Burness, G. (2014). Use of salivary cortisol to evaluate the influence of rides in dromedary camels. General and Comparative Endocrinology , .
| 25452030PubMed |
Marino, J. A., Holland, M. P., and Maher, J. (2014). Predators and trematode parasites jointly affect larval anuran functional traits and corticosterone levels. Oikos 123, 451–460.
| Predators and trematode parasites jointly affect larval anuran functional traits and corticosterone levels.Crossref | GoogleScholarGoogle Scholar |
Marsh, G. A., Haining, J., Hancock, T. J., Robinson, R., Foord, A. J., Barr, J. A., Riddell, S., Heine, H. G., White, J. R., Crameri, G., Field, H. E., Wang, L.-F., and Middleton, D. (2011). Experimental infection of horses with Hendra virus/Australia/horse/2008/Redlands. Emerging Infectious Diseases 17, 2232–2238.
| Experimental infection of horses with Hendra virus/Australia/horse/2008/Redlands.Crossref | GoogleScholarGoogle Scholar | 22172152PubMed |
Martin, L. B. (2009). Stress and immunity in wild vertebrates: timing is everything. General and Comparative Endocrinology 163, 70–76.
| Stress and immunity in wild vertebrates: timing is everything.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosV2iur0%3D&md5=a5bff540c8224bb14cfe0cf6551c4917CAS | 19318107PubMed |
Maule, A. G., Tripp, R. A., Kaattari, S. L., and Schreck, C. B. (1989). Stress alters immune function and disease resistance in chinook salmon (Oncorhynchus tshawytscha). The Journal of Endocrinology 120, 135–142.
| Stress alters immune function and disease resistance in chinook salmon (Oncorhynchus tshawytscha).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXntlOiug%3D%3D&md5=9bf1797a020800384cebcaaccddecd17CAS | 2918264PubMed |
McEwen, B. S. (2005). Stressed or stressed out: what is the difference? Journal of Psychiatry & Neuroscience 30, 315–318.
McMichael, L., Edson, D., and Field, H. (2014). Measuring physiological stress in Australian flying-fox populations. EcoHealth 11, 400–408.
| Measuring physiological stress in Australian flying-fox populations.Crossref | GoogleScholarGoogle Scholar | 24990534PubMed |
Mihok, S., Olubayo, R. O., and Moloo, S. K. (1992). Trypanosomiasis in the black rhinoceros (Diceros bicornis Linnaeus, 1758). Revue Scientifique et Technique 11, 1169–1173.
| 1:STN:280:DyaK3s3pvV2ruw%3D%3D&md5=5d3f5047bfee78532cde81fc4b650148CAS | 1305862PubMed |
Monello, R. J., Millspaugh, J. J., Woods, R. J., and Gompper, M. E. (2010). The influence of parasites on faecal glucocorticoid metabolite levels in raccoons: an experimental assessment in a natural setting. Journal of Zoology 282, 100–108.
Morand, S., Jittapalapong, S., Suputtamongkol, Y., Abdullah, M. T., and Huan, T. B. (2014). Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter. PLoS One 9, e90032.
| Infectious diseases and their outbreaks in Asia-Pacific: biodiversity and its regulation loss matter.Crossref | GoogleScholarGoogle Scholar | 24587201PubMed |
Mormède, P., Foury, A., Terenina, E., and Knap, P. W. (2011). Breeding for robustness: the role of cortisol. Animal: An International Journal of Animal Bioscience 5, 651–657.
| Breeding for robustness: the role of cortisol.Crossref | GoogleScholarGoogle Scholar |
Muehlenbein, M. (2009). The application of endocrine measures in primate parasite ecology. In ‘Primate Parasite Ecology: the Dynamics and Study of Host–parasite Relationships’. (Eds A. Huffman and C. Chapman.) pp. 63–81. (Cambridge University Press, Cambridge, UK) Available at http://www.indiana.edu/~ecolab/pubs/Muehlenbein_2009_Chapter.pdf [Verified 20 January 2015]
Munck, A., and Náray-Fejes-Tóth, A. (1994). Glucocorticoids and stress: permissive and suppressive actions. Annals of the New York Academy of Sciences 746, 115–130, discussion 131–133.
| Glucocorticoids and stress: permissive and suppressive actions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjvVSlsbg%3D&md5=2fba31334560143098bb184b5bee5033CAS | 7825870PubMed |
Myers, S. S., Gaffikin, L., Golden, C. D., Ostfeld, R. S. H., Redford, K. H., Ricketts, T., Turner, W. R., and Osofsky, S. A. (2013). Human health impacts of ecosystem alteration. Proceedings of the National Academy of Sciences, USA 110, 18753–18760.
| Human health impacts of ecosystem alteration.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvFCis7%2FJ&md5=78b536333054f4ced17f50f7938189beCAS |
Narayan, E. (2013). Non-invasive reproductive and stress endocrinology in amphibian conservation physiology. Conservation Physiology 1, cot011.
| Non-invasive reproductive and stress endocrinology in amphibian conservation physiology.Crossref | GoogleScholarGoogle Scholar |
Narayan, E. J., and Hero, J.-M. (2014). Repeated thermal stressor causes chronic elevation of baseline corticosterone and suppresses the physiological endocrine sensitivity to acute stressor in the cane toad (Rhinella marina). Journal of Thermal Biology 41, 72–76.
| Repeated thermal stressor causes chronic elevation of baseline corticosterone and suppresses the physiological endocrine sensitivity to acute stressor in the cane toad (Rhinella marina).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXltl2gs7o%3D&md5=e668232d21c105623abd77f22492634fCAS | 24679975PubMed |
Narayan, E., Hero, J., Evans, N., Nicolson, V., and Muccib, A. (2012). Non-invasive evaluation of physiological stress hormone responses in a captive population of the greater bilby Macrotis lagotis. Endangered Species Research 18, 279–289.
| Non-invasive evaluation of physiological stress hormone responses in a captive population of the greater bilby Macrotis lagotis.Crossref | GoogleScholarGoogle Scholar |
Narayan, E. J. (2015). Evaluation of physiological stress in Australian wildlife: embracing pioneering and current knowledge as a guide to future research directions. General and Comparative Endocrinology , .
| Evaluation of physiological stress in Australian wildlife: embracing pioneering and current knowledge as a guide to future research directions.Crossref | GoogleScholarGoogle Scholar | 26686317PubMed |
New South Wales Department of Primary Industries (2015). Hendra virus confirmed near Lismore 4 September 2015. Available at http://www.dpi.nsw.gov.au/aboutus/news/all/2015/hendra-virus-confirmed-near-lismore [Verified 11 December 2015]
Oppliger, A., Clobert, J., Lecomte, J., and Boudjemadi, K. (1998). Environmental stress increases the prevalence and intensity of blood parasite infection in the common lizard Lacerta vivipara. Ecology Letters 1, 129–138.
| Environmental stress increases the prevalence and intensity of blood parasite infection in the common lizard Lacerta vivipara.Crossref | GoogleScholarGoogle Scholar |
Ottaviani, E., and Franceschi, C. (1996). The neuroimmunology of stress from invertebrates to man. Progress in Neurobiology 48, 421–440.
| The neuroimmunology of stress from invertebrates to man.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XksFertbs%3D&md5=e8d7e195ac84935f52f4062c63d9648eCAS | 8804115PubMed |
Owen, J. C., Nakamura, A., Coon, C. A., and Martin, L. B. (2012). The effect of exogenous corticosterone on West Nile virus infection in northern cardinals (Cardinalis cardinalis). Veterinary Research 43, 34.
| The effect of exogenous corticosterone on West Nile virus infection in northern cardinals (Cardinalis cardinalis).Crossref | GoogleScholarGoogle Scholar | 22520572PubMed |
Padgett, D. A., and Glaser, R. (2003). How stress influences the immune response. Trends in Immunology 24, 444–448.
| How stress influences the immune response.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlvFGis7o%3D&md5=c2b0fd798a68ad71fa84e43f8a7da2b7CAS | 12909458PubMed |
Palme, R. (2005). Measuring fecal steroids: guidelines for practical application. Annals of the New York Academy of Sciences 1046, 75–80.
| Measuring fecal steroids: guidelines for practical application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWjtL%2FF&md5=652ae8075385bfea0ea19665123dda52CAS | 16055844PubMed |
Palme, R., Rettenbacher, S., Touma, C., and El‐Bahr, S. M. (2005). Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Annals of the New York Academy of Sciences 1040, 162–171.
| Stress hormones in mammals and birds: comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXos1eht7Y%3D&md5=911e1baf3bddb2c6d58b2245825ef589CAS | 15891021PubMed |
Pedersen, A. B., and Greives, T. J. (2008). The interaction of parasites and resources cause crashes in a wild mouse population. Journal of Animal Ecology 77, 370–377.
| The interaction of parasites and resources cause crashes in a wild mouse population.Crossref | GoogleScholarGoogle Scholar | 18028357PubMed |
Peters, E. (1984). A survey of cellular reactions to environment stress and disease in Caribbean scleractinian corals. Helgoländer Meeresuntersuchungen 37, 113–137.
| A survey of cellular reactions to environment stress and disease in Caribbean scleractinian corals.Crossref | GoogleScholarGoogle Scholar |
Playford, E. G., McCall, B., Smith, G., Slinko, V., Allen, G., Smith, I., Moore, F., Taylor, C., Kung, Y.-H., and Field, H. (2010). Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008. Emerging Infectious Diseases 16, 219–223.
| Human Hendra virus encephalitis associated with equine outbreak, Australia, 2008.Crossref | GoogleScholarGoogle Scholar | 20113550PubMed |
Plowright, R. K., Field, H. E., Smith, C., Divljan, A., Palmer, C., Tabor, G., Daszak, P., and Foley, J. E. (2008a). Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proceedings. Biological Sciences 275, 861–869.
| Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus).Crossref | GoogleScholarGoogle Scholar |
Plowright, R. K., Sokolow, S. H., Gorman, M. E., Daszak, P., and Foley, J. E. (2008b). Causal inference in disease ecology: investigating ecological drivers of disease emergence. Frontiers in Ecology and the Environment 6, 420–429.
| Causal inference in disease ecology: investigating ecological drivers of disease emergence.Crossref | GoogleScholarGoogle Scholar |
Plowright, R. K., Foley, P., Field, H. E., Dobson, A. P., Foley, J. E., Eby, P., and Daszak, P. (2011). Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.). Proceedings of the Royal Society of London. Series B, Biological Sciences 278, 3703–3712.
| Urban habituation, ecological connectivity and epidemic dampening: the emergence of Hendra virus from flying foxes (Pteropus spp.).Crossref | GoogleScholarGoogle Scholar |
Plowright, R. K., Eby, P., Hudson, P. J., Smith, I. L., Westcott, D., Bryden, W. L., Middleton, D., Reid, P. A., McFarlane, R. A., Martin, G., Tabor, G. M., Skerratt, L. F., Anderson, D. L., Crameri, G., Quammen, D., Jordan, D., Freeman, P., Wang, L.-F., Epstein, J. H., Marsh, G. A., Kung, N. Y., and McCallum, H. (2014). Ecological dynamics of emerging bat virus spillover. Proceedings of the Royal Society of London. Series B, Biological Sciences 282, 20142124.
| Ecological dynamics of emerging bat virus spillover.Crossref | GoogleScholarGoogle Scholar |
Raouf, S. A., Smith, L. C., Brown, M. B., Wingfield, J. C., and Brown, C. R. (2006). Glucocorticoid hormone levels increase with group size and parasite load in cliff swallows. Animal Behaviour 71, 39–48.
| Glucocorticoid hormone levels increase with group size and parasite load in cliff swallows.Crossref | GoogleScholarGoogle Scholar |
Reichlin, S. (1993). Neuroendocrine–immune interactions. The New England Journal of Medicine 329, 1246–1253.
| Neuroendocrine–immune interactions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c%2FhvFGnsw%3D%3D&md5=266cb2adc14f1f6db7d84561bc444783CAS | 8105378PubMed |
Rhyan, J. C., and Spraker, T. R. (2010). Emergence of diseases from wildlife reservoirs. Veterinary Pathology 47, 34–39.
| Emergence of diseases from wildlife reservoirs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c%2Fjt1aqsw%3D%3D&md5=ac9c05dfb393d02d12945a95f6236f11CAS | 20080482PubMed |
Saarinen, M., and Taskinen, J. (2005). Long-lasting effect of stress on susceptibility of a freshwater clam to copepod parasitism. Parasitology 130, 523–529.
| Long-lasting effect of stress on susceptibility of a freshwater clam to copepod parasitism.Crossref | GoogleScholarGoogle Scholar |
Sainsbury, A. W., and Vaughan-Higgins, R. J. (2012). Analyzing disease risks associated with translocations. Conservation Biology 26, 442–452.
| Analyzing disease risks associated with translocations.Crossref | GoogleScholarGoogle Scholar | 22533691PubMed |
Salak-Johnson, J. L., and McGlone, J. J. (2007). Making sense of apparently conflicting data: stress and immunity in swine and cattle. Journal of Animal Science 85, E81–E88.
| Making sense of apparently conflicting data: stress and immunity in swine and cattle.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7itlWktQ%3D%3D&md5=f2561460698c2132fb707c17b79070d7CAS | 17085721PubMed |
Sapolsky, R. M., Romero, L. M., and Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews 21, 55–89.
| 1:CAS:528:DC%2BD3cXhs12hu78%3D&md5=14978ee9da5c8882d1e2f43d04c45d09CAS | 10696570PubMed |
Scott, M. E. (1988). The impact of infection and disease on animal populations: implications for conservation biology. Conservation Biology 2, 40–56.
| The impact of infection and disease on animal populations: implications for conservation biology.Crossref | GoogleScholarGoogle Scholar |
Sheridan, J. F., Dobbs, C., Brown, D., and Zwilling, B. (1994). Psychoneuroimmunology: stress effects on pathogenesis and immunity during infection. Clinical Microbiology Reviews 7, 200–212.
| 1:STN:280:DyaK2czjt1yjsw%3D%3D&md5=d87e786aa0dc802b6d144ab5edf534c2CAS | 8055468PubMed |
Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R., and Boonstra, R. (2011). Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166, 869–887.
| Measuring stress in wildlife: techniques for quantifying glucocorticoids.Crossref | GoogleScholarGoogle Scholar | 21344254PubMed |
Smith, I., and Wang, L.-F. (2013). Bats and their virome: an important source of emerging viruses capable of infecting humans. Current Opinion in Virology 3, 84–91.
| Bats and their virome: an important source of emerging viruses capable of infecting humans.Crossref | GoogleScholarGoogle Scholar | 23265969PubMed |
Smith, I., Broos, A., de Jong, C., Zeddeman, A., Smith, C., Smith, G., Moore, F., Barr, J., Crameri, G., Marsh, G., Tachedjian, M., Yu, M., Kung, Y. H., Wang, L.-F., and Field, H. (2011). Identifying Hendra virus diversity in pteropid bats. PLoS One 6, e25275.
| Identifying Hendra virus diversity in pteropid bats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlCjs7fO&md5=f6fe736b28151577c44d7ca68dc27a40CAS | 21980413PubMed |
St Juliana, J. R., Khokhlova, I. S., Wielebnowski, N., Kotler, B. P., and Krasnov, B. R. (2014). Ectoparasitism and stress hormones: strategy of host exploitation, common host–parasite history and energetics matter. Journal of Animal Ecology , .
| Ectoparasitism and stress hormones: strategy of host exploitation, common host–parasite history and energetics matter.Crossref | GoogleScholarGoogle Scholar | 24661039PubMed |
Teixeira, C. P., De Azevedo, C. S., Mendl, M., Cipreste, C. F., and Young, R. J. (2007). Revisiting translocation and reintroduction programmes: the importance of considering stress. Animal Behaviour 73, 1–13.
| Revisiting translocation and reintroduction programmes: the importance of considering stress.Crossref | GoogleScholarGoogle Scholar |
Thompson, R. C. A., Lymbery, A. J., and Smith, A. (2010). Parasites, emerging disease and wildlife conservation. International Journal for Parasitology 40, 1163–1170.
| Parasites, emerging disease and wildlife conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnmsVKrtg%3D%3D&md5=7635ba070a1387333ecdd7612364444dCAS |
Thompson, R. C. A. (2013). Parasite zoonoses and wildlife: one health, spillover and human activity. International Journal for Parasitology 43, 1079–1088.
Tsigos, C., and Chrousos, G. (1994). Physiology of the hypothalamic–pituitary–adrenal axis in health and dysregulation in psychiatric and autoimmune disorders. Endocrinology and Metabolism Clinics of North America 23, 451–466.
| 1:STN:280:DyaK2M7gsVWksA%3D%3D&md5=c2f94e9687dab358b597b0e7904970d8CAS | 7805648PubMed |
Van Bressem, M.-F., Raga, J. A., Di Guardo, G., Jepson, P. D., Duignan, P. J., Siebert, U., Barrett, T., Santos, M. C. de O., Moreno, I. B., Siciliano, S., Aguilar, A., and Van Waerebeek, K. (2009). Emerging infectious diseases in cetaceans worldwide and the possible role of environmental stressors. Diseases of Aquatic Organisms 86, 143–157.
| Emerging infectious diseases in cetaceans worldwide and the possible role of environmental stressors.Crossref | GoogleScholarGoogle Scholar | 19902843PubMed |
Villiers, M. S., Meltzer, D. G. A., Heerden, J. V., Mills, M. G. L., Richardson, P. R. K., and Jaarsveld, A. S. V. (1995). Handling-induced stress and mortalities in African wild dogs (Lycaon pictus). Proceedings of the Royal Society of London. Series B, Biological Sciences 262, 215–220.
| Handling-induced stress and mortalities in African wild dogs (Lycaon pictus).Crossref | GoogleScholarGoogle Scholar |
Warne, R., Crespi, E., and Brunner, J. (2011). Escape from the pond: stress and developmental responses to ranavirus infection in wood frog tadpoles. Functional Ecology 25, 139–146.
| Escape from the pond: stress and developmental responses to ranavirus infection in wood frog tadpoles.Crossref | GoogleScholarGoogle Scholar |
Weber, T. P., and Stilianakis, N. I. (2007). Ecologic immunology of avian influenza (H5N1) in migratory birds. Emerging Infectious Diseases 13, 1139–1143.
| Ecologic immunology of avian influenza (H5N1) in migratory birds.Crossref | GoogleScholarGoogle Scholar | 17953082PubMed |
Westbury, H. (2000). Hendra virus disease in horses. Revue Scientifique et Technique 19, 151–159.
| 1:STN:280:DC%2BD38%2FgsFWntw%3D%3D&md5=d5bfb7b80b2a5bd72d71ef5e463f9a2cCAS | 11189712PubMed |
Young, P. L., Halpin, K., Mackenzie, J. S., and Field, H. E. (2000). Isolation of Hendra virus from pteropid bats: a natural reservoir of Hendra virus. Journal of General Virology 81, 1927–1932.
| 10900029PubMed |
Zhou, Z., Zhu, G., Hariri, A. R., Enoch, M.-A., Scott, D., Sinha, R., Virkkunen, M., Mash, D. C., Lipsky, R. H., Hu, X.-Z., Hodgkinson, C. A., Xu, K., Buzas, B., Yuan, Q., Shen, P.-H., Ferrell, R. E., Manuck, S. B., Brown, S. M., Hauger, R. L., Stohler, C. S., Zubieta, J.-K., and Goldman, D. (2008). Genetic variation in human NPY expression affects stress response and emotion. Nature 452, 997–1001.
| Genetic variation in human NPY expression affects stress response and emotion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltVGrt7k%3D&md5=80518d9290d32ec910e9bea10618819aCAS | 18385673PubMed |
Zinsstag, J., Schelling, E., Waltner-Toews, D., and Tanner, M. (2011). From ‘One Medicine’ to ‘One Health’ and systemic approaches to health and well-being. Preventive Veterinary Medicine 101, 148–156.
| From ‘One Medicine’ to ‘One Health’ and systemic approaches to health and well-being.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnovVOntg%3D%3D&md5=5422afe1993fa638a9fc6ba919bf0497CAS | 20832879PubMed |