Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
REVIEW

Toxic Trojans: can feral cat predation be mitigated by making their prey poisonous?

J. L. Read A B E , D. Peacock A C , A. F. Wayne D and K. E. Moseby A B
+ Author Affiliations
- Author Affiliations

A School of Earth and Environmental Sciences, The University of Adelaide, Private Mail Bag 1, Adelaide, SA 5064, Australia.

B Ecological Horizons, PO Box 207, Kimba, SA 5641, Australia.

C Biosecurity SA, GPO Box 1671, Adelaide, SA 5001, Australia.

D Department of Parks and Wildlife, Locked Bag 2, Manjimup, WA 6258, Australia.

E Corresponding author. Email: john.read@adelaide.edu.au

Wildlife Research 42(8) 689-696 https://doi.org/10.1071/WR15125
Submitted: 22 June 2015  Accepted: 2 November 2015   Published: 25 January 2016

Abstract

Predation, along with competition and disease transmission from feral domestic cats (Felis catus), poses the key threat to many in situ and reintroduced populations of threatened species globally. Feral cats are more challenging to control than pest canids because cats seldom consume poison baits or enter baited traps when live prey are readily available. Novel strategies for sustainably protecting threatened wildlife from feral cats are urgently required. Emerging evidence suggests that once they have successfully killed a challenging species, individual feral cats can systematically eradicate threatened prey populations. Here we propose to exploit this selective predation through three targeted strategies to improve the efficacy of feral cat control. Toxic collars and toxic implants, fitted or inserted during monitoring or reintroduction programs for threatened species, could poison the offending cat before it can effect multiple kills of the target species. A third strategy is informed by evidence that consumption of prey species that are relatively tolerant to natural plant toxins, can be lethal to more sensitive cats. Within key habitats of wildlife species susceptible to cat predation, we advocate increasing the accessibility of these toxins in the food chain, provided negative risks can be mediated. Deliberate poisoning using live and unaffected ‘toxic Trojan prey’ enables ethical feral cat management that takes advantage of cats’ physiological and behavioural predilection for hunting live prey while minimising risks to many non-targets, compared with conventional baiting.

Additional keywords: collars, Felis catus, implants, plant toxins, predator control, secondary poisoning.


References

Adamec, R. E. (1976). The interaction of hunger and preying in the domestic cat (Felis catus): an adaptive hierarchy? Behavioral Biology 18, 263–272.
The interaction of hunger and preying in the domestic cat (Felis catus): an adaptive hierarchy?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s%2FmsFSmsg%3D%3D&md5=3fd49c9b573dd11fa1e302d74bb9983bCAS | 999580PubMed |

Algar, D., Angus, G. J., Williams, M. R., and Mellican, A. E. (2007). Influence of bait type, weather and prey abundance on bait uptake by feral cats (Felis catus) on Peron Peninsula, Western Australia. Conservation Science Western Australia 6, 109–149.

Algar, D., Onus, M., and Hamilton, N. (2013). Feral cat control as part of rangelands restoration at Lorna Glen (Matuwa), Western Australia: the first seven years. Conservation Science Western Australia 8, 367–381.

Alonso, R., Orejas, P., Lopes, F., and Sanz, C. (2011). Pre-release training of juvenile little owls Athene noctua to avoid predation. Animal Biodiversity and Conservation 34, 389–393.

Alterio, N. (1996). Secondary poisoning of stoats (Mustela erminea), feral ferrets (Mustela furo), and feral house cats (Felis catus) by the anticoagulant poison, brodifacoum. New Zealand Journal of Zoology 23, 331–338.
Secondary poisoning of stoats (Mustela erminea), feral ferrets (Mustela furo), and feral house cats (Felis catus) by the anticoagulant poison, brodifacoum.Crossref | GoogleScholarGoogle Scholar |

Alterio, N. (2000). Controlling small mammal predators using sodium monofluoroacetate (1080) in bait stations along forestry roads in a New Zealand beech forest. New Zealand Journal of Ecology 24, 3–9.

Berny, P. (2007). Pesticides and the intoxication of wild animals. Journal of Veterinary Pharmacology and Therapeutics 30, 93–100.
Pesticides and the intoxication of wild animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFWht7s%3D&md5=2822167a869251dd82ce5aed16c6b7d8CAS | 17348893PubMed |

Bradshaw, J. W. S., Goodwin, D., Legrand-Defrétin, V., and Nott, H. M. R. (1996). Food selection by the domestic cat, an obligate carnivore. Comparative Biochemistry and Physiology 114, 205–209.
Food selection by the domestic cat, an obligate carnivore.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28zhs1CgtA%3D%3D&md5=c97c62c3e6cb5f1ae6d18b0cc8ffc3a1CAS |

Brakes, C. R., and Smith, R. H. (2005). Exposure of non-target small mammals to rodenticides: short-term effects, recovery and implications for secondary poisoning. Journal of Applied Ecology 42, 118–128.
Exposure of non-target small mammals to rodenticides: short-term effects, recovery and implications for secondary poisoning.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFWmsLc%3D&md5=a8013ace62260195abc2fbfb9e7665dcCAS |

Brosey, B. P., Hill, R. C., and Scott, K. C. (2000). Gastrointestinal volatile fatty acid concentrations and pH in cats. American Journal of Veterinary Research 61, 359–361.
Gastrointestinal volatile fatty acid concentrations and pH in cats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXivVeit7o%3D&md5=2c8afe5059622a85548e7e292ea52127CAS | 10772097PubMed |

Brower, L. P., Ryerson, W. N., Coppinger, L. L., and Glazier, S. C. (1968). Ecological chemistry and the palatability spectrum. Science 161, 1349–1350.
Ecological chemistry and the palatability spectrum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1cXkvFCisr8%3D&md5=6e32c093ced5471c3469878a05573882CAS | 17831347PubMed |

Buckmaster, T., Dickman, C. R., and Johnston, M. J. (2014). Assessing risks to non-target species during poison baiting programs for feral cats. PLoS One 9, e107788.
Assessing risks to non-target species during poison baiting programs for feral cats.Crossref | GoogleScholarGoogle Scholar | 25229348PubMed |

Burbidge, A. A., and McKenzie, N. L. (1989). Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications. Biological Conservation 50, 143–198.
Patterns in the modern decline of Western Australia’s vertebrate fauna: causes and conservation implications.Crossref | GoogleScholarGoogle Scholar |

Burns, R. J., Zemlicka, D. E., and Savarie, P. J. (1996). Effectiveness of large livestock protection collars against depredating coyotes. Wildlife Society Bulletin 24, 123–127.

Burrows, N. D., Algar, D., Robinson, A. D., Sinagra, J., Ward, B., and Liddelow, G. (2003). Controlling introduced predators in the Gibson Desert of Western Australia. Journal of Arid Environments 55, 691–713.
Controlling introduced predators in the Gibson Desert of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Chandler, M. L., Guilford, G., and Lawoko, C. R. O. (1997). Radiopaque markers to evaluate gastric emptying and small intestinal transit time in healthy cats. Journal of Veterinary Internal Medicine 11, 361–364.
Radiopaque markers to evaluate gastric emptying and small intestinal transit time in healthy cats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c7jtV2gug%3D%3D&md5=8b69dd3b1970aacfad5eb252f144b518CAS | 9470162PubMed |

Chandler, G. T., Crisp, M. D., Cayzer, L. W., and Bayer, R. J. (2002). Monograph of Gastrolobium (Fabaceae: Mirbelieae). Australian Systematic Botany 15, 619–739.
Monograph of Gastrolobium (Fabaceae: Mirbelieae).Crossref | GoogleScholarGoogle Scholar |

Christensen, P. E. S. (1980). A sad day for native fauna. Forest Focus 23, 3–12.

Christensen, P., and Burrows, N. (1995). Project desert dreaming: experimental reintroduction of mammals to the Gibson Desert, Western Australia. In ‘Reintroduction Biology of Australian and New Zealand Fauna’. (Ed. M. Serena.) pp. 199–207. (Surrey Beatty: Sydney.)

Christensen, P. E. S., Ward, B. G., and Sims, C. (2012). Predicting bait uptake by feral cats, Felis catus, in semi-arid environments. Ecological Management & Restoration 14, 1–7.

Colvin, B. A., Hegdal, P. L., and Jackson, W. B. (1988). Review of non-target hazards associated with rodenticide use in the USA. EPPO Bulletin 18, 301–308.
Review of non-target hazards associated with rodenticide use in the USA.Crossref | GoogleScholarGoogle Scholar |

Cuthbert, R. (2003). Sign left by introduced and native predators feeding on Hutton’s shearwaters Puffinus huttoni. New Zealand Journal of Zoology 30, 163–170.
Sign left by introduced and native predators feeding on Hutton’s shearwaters Puffinus huttoni.Crossref | GoogleScholarGoogle Scholar |

Daly, J. W. (1995). Alkaloids from frog skins: selective probes for ion channels and nicotinic receptors. Brazilian Journal of Medical and Biological Research 28, 1033–1042.
| 1:CAS:528:DyaK28XmsVGj&md5=0a961871a125c28e4808d8d106990eb4CAS | 8634674PubMed |

Denny, E., and Dickman, C. (2010). ‘Review of Cat Ecology and Management Strategies in Australia.’ Invasive Animals Cooperative Research Centre: Sydney.)

Dickman, C. R. (2014). Measuring and managing the impacts of cats. In ‘Carnivores of Australia: Past, Present and Future’. (Ed. A. S. Glen and C. R. Dickman.) pp. 173–195. (CSIRO Publishing: Melbourne.)

Dickman, C. R., and Newsome, T. M. (2015). Individual hunting behaviour and prey specialisation in the house cat Felis catus: implications for conservation and management. Applied Animal Behaviour Science 173, 76–87.
Individual hunting behaviour and prey specialisation in the house cat Felis catus: implications for conservation and management.Crossref | GoogleScholarGoogle Scholar |

Dickson, M. G., and Sharpe, D. T. (1985). Continuous subcutaneous tissue pH measurement as a monitor of blood flow in skin flaps: an experimental study. British Journal of Plastic Surgery 38, 39–42.
Continuous subcutaneous tissue pH measurement as a monitor of blood flow in skin flaps: an experimental study.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M%2FpvVersw%3D%3D&md5=565e8ac364f2a31c64d999055b208186CAS | 3967110PubMed |

Domm, S., and Messersmith, J. (1990). Feral cat eradication on a Barrier Reef island, Australia. Atoll Research Bulletin 338, 1–4.
Feral cat eradication on a Barrier Reef island, Australia.Crossref | GoogleScholarGoogle Scholar |

Dumbacher, J. P., Wako, A., Derrickson, S. R., Samuelson, A., Spande, T. F., and Daly, J. W. (2004). Melyrid beetles (Choresine): A putative source for the batrachotoxin alkaloids found in poison-dart frogs and toxic passerine birds. Proceedings of the National Academy of Sciences, USA 101, 15857–15860.
Melyrid beetles (Choresine): A putative source for the batrachotoxin alkaloids found in poison-dart frogs and toxic passerine birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVGisrvE&md5=dd1cdb1dcd548fc18f89bb1f162a2bd4CAS |

Eason, C. T., and Frampton, C. M. (1991). Acute toxicity of sodium monofluoroacetate (1080) baits to feral cats. Wildlife Research 18, 445–450.
Acute toxicity of sodium monofluoroacetate (1080) baits to feral cats.Crossref | GoogleScholarGoogle Scholar |

Eason, C. T., Murphy, E. C., Hix, S., and Macmorran, D. B. (2010a). Development of a new humane toxin for predator control in New Zealand. Integrative Zoology 5, 31–36.
Development of a new humane toxin for predator control in New Zealand.Crossref | GoogleScholarGoogle Scholar | 21392319PubMed |

Eason, C. T., Shapiro, L., Adams, P., Hix, S., Cunningham, C., MacMorran, D., Statham, M., and Statham, H. (2010b). Advancing a humane alternative to sodium fluoroacetate (1080) for wildlife management: welfare and wallaby control. Wildlife Research 37, 497–503.
Advancing a humane alternative to sodium fluoroacetate (1080) for wildlife management: welfare and wallaby control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVCht73F&md5=a02b4942078ee33b45942b99dee5c304CAS |

Ewen, J. G., Walker, L., Canessa, S., and Groombridge, J. J. (2014). Improving supplementary feeding in species conservation. Conservation Biology 29, 341–349.
Improving supplementary feeding in species conservation.Crossref | GoogleScholarGoogle Scholar | 25354808PubMed |

Fancourt, B. A. (2015). Making a killing: photographic evidence of predation of a Tasmanian pademelon (Thylogale billardierii) by a feral cat (Felis catus). Australian Mammalogy 37, 120–124.
Making a killing: photographic evidence of predation of a Tasmanian pademelon (Thylogale billardierii) by a feral cat (Felis catus).Crossref | GoogleScholarGoogle Scholar |

Fisher, P., Algar, D., Murphy, E., Johnston, M., and Eason, C. (2014). How does cat behaviour influence the development and implementation of monitoring techniques and lethal control methods for feral cats? Applied Animal Behaviour Science 173, 88–96.
How does cat behaviour influence the development and implementation of monitoring techniques and lethal control methods for feral cats?Crossref | GoogleScholarGoogle Scholar |

Fitzgerald, B. M. (1988). Diet of domestic cats and their impact on prey populations. In ‘The Domestic Cat: the biology of its Behaviour’. (Ed. D. C. Turner and P. Bateson.) pp. 123–144. (Cambridge University Press: Cambridge, UK.)

Frank, A. S. K., Johnson, C. N., Potts, J. M., Fisher, A., Lawes, M. J., Woinarski, J. C. Z., Tuft, K., Radford, I. J., Gordon, I. J., Collis, M.-A., and Legge, S. (2014). Experimental evidence that feral cats cause local extirpation of small mammals in Australia’s tropical savannas. Journal of Applied Ecology 51, 1486–1493.
Experimental evidence that feral cats cause local extirpation of small mammals in Australia’s tropical savannas.Crossref | GoogleScholarGoogle Scholar |

Gillies, C. A., and Pierce, R. J. (1999). Secondary poisoning of mammalian predators during possum and rodent control operations at Trounson Kauri Park, Northland, New Zealand. New Zealand Journal of Ecology 23, 183–192.

Hayward, M. W., and Kerley, G. I. H. (2009). Fencing for conservation: restriction of evolutionary potential or a riposte to threatening processes? Biological Conservation 142, 1–13.
Fencing for conservation: restriction of evolutionary potential or a riposte to threatening processes?Crossref | GoogleScholarGoogle Scholar |

Hayward, M. W., Moseby, K., and Read, J. L. (2014). The role of predator exclosures in the conservation of Australian fauna. In ‘Carnivores of Australia: Past, Present and Future’. (Ed. A. S. Glen and C. R. Dickman.) pp. 355–372. (CSIRO Publishing: Melbourne.)

Hetherington, C. A., Algar, D., Mills, H., and Bencini, R. (2007). Increasing the target-specificity of ERADICAT® for feral cat (Felis catus) control by encapsulating a toxicant. Wildlife Research 34, 467–471.
Increasing the target-specificity of ERADICAT® for feral cat (Felis catus) control by encapsulating a toxicant.Crossref | GoogleScholarGoogle Scholar |

Heyward, R. P., and Norbury, G. L. (1999). Secondary poisoning of ferrets and cats after 1080 rabbit poisoning. Wildlife Research 26, 75–80.
Secondary poisoning of ferrets and cats after 1080 rabbit poisoning.Crossref | GoogleScholarGoogle Scholar |

Hopper, S. (1991). Poison peas: deadly protectors. Landscope 1991, 45–50.

Jacquot, M., Coeurdassier, M., Couval, G., Renaude, R., Pleydell, D., Truchetet, D., Raoul, F., and Giraudoux, P. (2013). Using long-term monitoring of red fox populations to assess changes in rodent control practices. Journal of Applied Ecology 50, 1406–1414.
Using long-term monitoring of red fox populations to assess changes in rodent control practices.Crossref | GoogleScholarGoogle Scholar |

Johnston, M., Gigliotti, F., O’Donoghue, M., Holdsworth, M., Robinson, S., Herrod, A., and Eklom, K. (2012). Field assessment of the Curiosity® bait for management of feral cats in the semi-arid zone (Flinders Ranges National Park). Technical Report Series No. 234. Arthur Rylah Institute for Environmental Research, Melbourne.

King, D. R. (1990). ‘1080 and Australian Fauna.’ (Western Australia Agriculture Protection Board: Perth.)

King, D. R., Oliver, A. J., and Mead, R. J. (1981). Bettongia and fluoroacetate: a role for 1080 in fauna management. Australian Wildlife Research 8, 529–536.
Bettongia and fluoroacetate: a role for 1080 in fauna management.Crossref | GoogleScholarGoogle Scholar |

King, D. R., Twigg, L. E., and Gardner, J. L. (1989). Tolerance to sodium monofluoroacetate in dasyurids from Western Australia. Australian Wildlife Research 16, 131–140.
Tolerance to sodium monofluoroacetate in dasyurids from Western Australia.Crossref | GoogleScholarGoogle Scholar |

King, D. R., Kirkpatrick, W. E., and Mcgrath, M. (1996). The tolerance of malleefowl Leipoa ocellata to 1080. Emu 96, 198–202.
The tolerance of malleefowl Leipoa ocellata to 1080.Crossref | GoogleScholarGoogle Scholar |

Lamont, B. B., Ralph, C. S., and Christensen, P. E. S. (1985). Mycophagous marsupials as dispersal agents for ectomycorrhizal fungi on Eucalyptus calophylla and Gastrolobium bilobum. New Phytologist 101, 651–656.
Mycophagous marsupials as dispersal agents for ectomycorrhizal fungi on Eucalyptus calophylla and Gastrolobium bilobum.Crossref | GoogleScholarGoogle Scholar |

Lewis, D. C., Metallinos-Katzaras, E., and Grivetti, L. E. (1987). Coturnism: human poisoning by European migratory quail. Journal of Cultural Geography 7, 51–65.
Coturnism: human poisoning by European migratory quail.Crossref | GoogleScholarGoogle Scholar |

MacDonald, M. L., Rogers, Q. R., and Morris, J. G. (1984). Nutrition of the domestic cat, a mammalian carnivore. Annual Review of Nutrition 4, 521–562.
Nutrition of the domestic cat, a mammalian carnivore.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlsFShtLY%3D&md5=519528d6a470c5254f2055c674861ad1CAS | 6380542PubMed |

Marks, C. A., Johnston, M. J., Fisher, P. M., Pontin, K., and Shaw, M. J. (2006). Differential particle size: promoting target-specific baiting of feral cats. Journal of Wildlife Management 70, 1119–1124.
Differential particle size: promoting target-specific baiting of feral cats.Crossref | GoogleScholarGoogle Scholar |

Marlow, N. J., Thomas, N. D., Williams, A. A. E., Macmahon, B., Lawson, J., Hitchen, Y., Angus, J., and Berry, O. (2015). Cats (Felis catus) are more abundant and are the dominant predator of woylies (Bettongia penicillata) after sustained fox (Vulpes vulpes) control. Australian Journal of Zoology 63, 18–27.
Cats (Felis catus) are more abundant and are the dominant predator of woylies (Bettongia penicillata) after sustained fox (Vulpes vulpes) control.Crossref | GoogleScholarGoogle Scholar |

Marsh, K. J., Wallis, I. R., and Foley, W. J. (2005). Detoxification rates constrain feeding in common brushtail possums (Trichosurus vulpecula). Ecology 86, 2946–2954.
Detoxification rates constrain feeding in common brushtail possums (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar |

McGregor, H. W., Legge, S., Jones, M. E., and Johnson, C. N. (2014). Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats. PLoS One 9, e109097.
Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.Crossref | GoogleScholarGoogle Scholar | 25329902PubMed |

McGregor, H. W., Legge, S., Potts, J., Jones, M., and Johnson, C. N. (2015). Density and home range of feral cats in north-western Australia. Wildlife Research 42, 223–231.
Density and home range of feral cats in north-western Australia.Crossref | GoogleScholarGoogle Scholar |

McIlroy, J. C. (1981). The sensitivity of Australian animals to 1080 poison II. Marsupial and eutherian carnivores. Australian Wildlife Research 8, 385–399.
The sensitivity of Australian animals to 1080 poison II. Marsupial and eutherian carnivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XotFShtg%3D%3D&md5=c268d2d4aee8396f668b60d2b7d27b96CAS |

McIlroy, J. C. (1986). The sensitivity of Australian animals to 1080 poison IX. Comparisons between the major groups of animals, and the potential danger non-target species face from 1080-poisoning campaigns. Australian Wildlife Research 13, 39–48.
The sensitivity of Australian animals to 1080 poison IX. Comparisons between the major groups of animals, and the potential danger non-target species face from 1080-poisoning campaigns.Crossref | GoogleScholarGoogle Scholar |

Mead, R. J., Oliver, A. J., King, D. R., and Hubach, P. H. (1985). The co-evolutionary role of fluoroacetate in plant–animal interactions in Australia. Oikos 44, 55–60.
The co-evolutionary role of fluoroacetate in plant–animal interactions in Australia.Crossref | GoogleScholarGoogle Scholar |

Mech, L. D. (1980). Making the most of radiotracking. In ‘A Handbook on Biotelemetry and Radio-tracking’. (Ed. C. J. Amlaner Jr. and D. W. MacDonald.) pp. 85–95. (Pergamon Press: Oxford, UK.)

Medina, F. M., Bonnaud, E., Vidal, E., Tershy, B. R., Zavaleta, E. S., Josh Donlan, C., Keitt, B. S., Le Corre, M., Horwath, S. V., and Nogales, M. (2011). A global review of the impacts of invasive cats on island endangered vertebrates. Global Change Biology 17, 3503–3510.
A global review of the impacts of invasive cats on island endangered vertebrates.Crossref | GoogleScholarGoogle Scholar |

Medina, F. M., Bonnaud, E., Vidal, E., and Nogales, M. (2014). Underlying impacts of invasive cats on islands: not only a question of predation. Biodiversity and Conservation 23, 327–342.
Underlying impacts of invasive cats on islands: not only a question of predation.Crossref | GoogleScholarGoogle Scholar |

Morris, K., Sims, C., Himbeck, K., Christensen, P., Sercombe, N., Ward, B., and Noakes, N. (2004). Project Eden: fauna recovery on Peron Peninsula, Shark Bay. Western Shield review – February 2003. Conservation Science Western Australia 5, 202–234.

Moseby, K. E., and Read, J. L. (2006). The efficacy of feral cat, fox and rabbit exclusion fence designs for threatened species protection. Biological Conservation 127, 429–437.
The efficacy of feral cat, fox and rabbit exclusion fence designs for threatened species protection.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Stott, J., and Crisp, H. (2009). Movement patterns of feral predators in an arid environment: implications for control through poison baiting. Wildlife Research 36, 422–435.
Movement patterns of feral predators in an arid environment: implications for control through poison baiting.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Read, J. L., Galbraith, B., Munro, N., Newport, J., and Hill, B. M. (2011a). The use of poison baits to control feral cats and red foxes in arid South Australia II. Bait type, placement, lures and non-target uptake. Wildlife Research 38, 350–358.
The use of poison baits to control feral cats and red foxes in arid South Australia II. Bait type, placement, lures and non-target uptake.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Read, J. L., Paton, D. C., Copley, P., Hill, B. M., and Crisp, H. M. (2011b). Predation determines the outcome of 10 reintroduction attempts in arid Australia. Biological Conservation 144, 2863–2872.
Predation determines the outcome of 10 reintroduction attempts in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Carthey, A., and Schroeder, T. (2015a). The influence of predators and prey naivety on reintroduction success; current and future directions. In ‘Advances in Reintroduction Biology of Australian and New Zealand Fauna’. (Ed. D. P. Armstrong, M. W. Hayward, D. Moro and P. J. Seddon.) pp. 29–42. (CSIRO Publishing: Melbourne.)

Moseby, K. E., Peacock, D. P., and Read, J. L. (2015b). Catastrophic cats: a call for predator profiling in wildlife protection programs. Biological Conservation 191, 331–340.
Catastrophic cats: a call for predator profiling in wildlife protection programs.Crossref | GoogleScholarGoogle Scholar |

Mrozek, M., Fischer, R., Trendelenburg, M., and Zillmann, U. (1995). Microchip implant system used for animal identification in laboratory rabbits, guinea pigs, woodchucks and in amphibians. Laboratory Animals 29, 339–344.
Microchip implant system used for animal identification in laboratory rabbits, guinea pigs, woodchucks and in amphibians.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FkslKisw%3D%3D&md5=9afbc0033cba0be8fc9622eb977f0424CAS | 7564221PubMed |

Mugford, R. A. (1977). External influences on the feeding of carnivores. In ‘The Chemical Senses and Nutrition’. (Ed. M. R. Kare and O. Maller.) pp. 25–50. (Academic Press: New York.)

Nogales, M., Martín, A., Tershy, B. R., Donlan, C. J., Veitch, D., Puerta, N., Wood, B., and Alonso, J. (2004). A review of feral cat eradication on islands. Conservation Biology 18, 310–319.
A review of feral cat eradication on islands.Crossref | GoogleScholarGoogle Scholar |

Nogales, M., Vidal, E., Medina, F. M., Bonnaud, E., Tershy, B. R., Campbell, K. J., and Zavaleta, E. S. (2013). Feral cats and biodiversity conservation: the urgent prioritization of island management. Bioscience 63, 804–810.
Feral cats and biodiversity conservation: the urgent prioritization of island management.Crossref | GoogleScholarGoogle Scholar |

O’Donnell, S., Webb, J. K., and Shine, R. (2010). Conditioned taste aversion enhances the survival of an endangered predator imperilled by a toxic invader. Journal of Applied Ecology 47, 558–565.
Conditioned taste aversion enhances the survival of an endangered predator imperilled by a toxic invader.Crossref | GoogleScholarGoogle Scholar |

Oppel, S., Burns, F., Vickery, J., George, K., Ellick, G., Leo, D., and Hillman, J. C. (2014). Habitat-specific effectiveness of feral cat control for the conservation of an endemic ground-nesting bird species. Journal of Applied Ecology 51, 1246–1254.
Habitat-specific effectiveness of feral cat control for the conservation of an endemic ground-nesting bird species.Crossref | GoogleScholarGoogle Scholar |

Peachey, S. E., Dawson, J. M., and Harper, E. J. (2000). Gastrointestinal transit times in young and old cats. Comparative Biochemistry and Physiology Part A 126, 85–90.
Gastrointestinal transit times in young and old cats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvjsVGqtA%3D%3D&md5=2e02a7f28223108b1bd817b07ab69a31CAS |

Peacock, D. (2003). The search for a novel toxicant in Gastrolobium (Fabaceae: Mirbelieae) seed historically associated with toxic native fauna. Ph.D. Thesis, The University of Adelaide.

Peacock, D., Christensen, P., and Williams, B. (2011). Historical accounts of toxicity to introduced carnivores consuming bronzewing pigeons (Phaps chalcoptera and P. elegans) and other vertebrate fauna in south-west Western Australia. Australian Zoologist 35, 826–842.
Historical accounts of toxicity to introduced carnivores consuming bronzewing pigeons (Phaps chalcoptera and P. elegans) and other vertebrate fauna in south-west Western Australia.Crossref | GoogleScholarGoogle Scholar |

Pearson, D. (2012). ‘Recovery Plan for Five Species of Rock Wallabies: Blackfooted Rock Wallaby (Petrogale lateralis), Rothschild Rock Wallaby (Petrogale rothschildi), Short-eared Rock Wallaby (Petrogale brachyotis), Monjon (Petrogale burbidgei) and Nabarlek (Petrogale concinna) 2012–2022.’ (Department of Environment and Conservation: Perth.)

Phillips, R. B., and Winchell, C. S. (2011). Reducing nontarget recaptures of an endangered predator using conditioned aversion and reward removal. Journal of Applied Ecology 48, 1501–1507.
Reducing nontarget recaptures of an endangered predator using conditioned aversion and reward removal.Crossref | GoogleScholarGoogle Scholar |

Read, J. L., and Bowen, Z. (2001). Population dynamics, diet and aspects of the biology of feral cats and foxes in arid South Australia. Wildlife Research 28, 195–203.
Population dynamics, diet and aspects of the biology of feral cats and foxes in arid South Australia.Crossref | GoogleScholarGoogle Scholar |

Read, J. L., and Ward, M. J. (2011). Bringing back warru: initiation and implementation of the South Australian warru recovery plan. Australian Mammalogy 33, 1–7.
Bringing back warru: initiation and implementation of the South Australian warru recovery plan.Crossref | GoogleScholarGoogle Scholar |

Read, J., Gigliotti, F., Darby, S., and Lapidge, S. (2014). Dying to be clean: pen trials of novel cat and fox control devices. International Journal of Pest Management 60, 166–172.
Dying to be clean: pen trials of novel cat and fox control devices.Crossref | GoogleScholarGoogle Scholar |

Read, J. L., Bengsen, A. J., Meek, P. D., and Moseby, K. E. (2015). How to snap your cat: optimum lures and their placement for attracting mammalian predators in arid Australia. Wildlife Research 42, 1–12.
How to snap your cat: optimum lures and their placement for attracting mammalian predators in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Risbey, D. A., Calver, M., and Short, J. (1997). Control of feral cats for nature conservation. I. Field tests of four baiting methods. Wildlife Research 24, 319–326.
Control of feral cats for nature conservation. I. Field tests of four baiting methods.Crossref | GoogleScholarGoogle Scholar |

Robley, A., Purdey, D., Johnston, M., Lindeman, M., Busana, F., and Long, K. (2007). Experimental trials to determine effective fence designs for feral cat and fox exclusion. Ecological Management & Restoration 8, 193–198.
Experimental trials to determine effective fence designs for feral cat and fox exclusion.Crossref | GoogleScholarGoogle Scholar |

Rodríguez, C., Torres, R., and Drummond, H. (2006). Eradicating introduced mammals from a forested tropical island. Biological Conservation 130, 98–105.
Eradicating introduced mammals from a forested tropical island.Crossref | GoogleScholarGoogle Scholar |

Rumbeiha, W. K., Francis, J. A., Fitzgerald, S. D., Nair, M. G., Holan, K., Bugyei, K. A., and Simmons, H. (2004). A comprehensive study of Easter lily poisoning in cats. Journal of Veterinary Diagnostic Investigation 16, 527–541.
A comprehensive study of Easter lily poisoning in cats.Crossref | GoogleScholarGoogle Scholar | 15586568PubMed |

Russell-Smith, J., Ryan, P. G., Klessa, D., Waight, G., and Harwood, R. (1998). Fire regimes, fire-sensitive vegetation and fire management of the sandstone Arnhem Plateau, monsoonal northern Australia. Journal of Applied Ecology 35, 829–846.
Fire regimes, fire-sensitive vegetation and fire management of the sandstone Arnhem Plateau, monsoonal northern Australia.Crossref | GoogleScholarGoogle Scholar |

Scrivner J. H. 1983 The 1080 toxic collar: economics of field use in Texas. Proceedings of the Western Wildlife Damage Control Conference 1 201 204

Short, J., Turner, B., Risbey, D. A., and Carnamah, R. (1997). Control of feral cats for nature conservation. II. Population reduction by poisoning. Wildlife Research 24, 703–714.
Control of feral cats for nature conservation. II. Population reduction by poisoning.Crossref | GoogleScholarGoogle Scholar |

Short, J., Atkins, L., and Turner, B. (2005). Diagnosis of mammal decline in Western Australia, with particular emphasis on the possible role of feral cats and poison peas. Report to National Geographic Society, Washington, DC. CSIRO Sustainable Ecosystems, Perth.

Sinclair, R. G., and Bird, P. L. (1984). The reaction of Sminthopsis crassicaudata to meat baits containing 1080: implications for assessing risk to non-target species. Australian Wildlife Research 11, 501–507.
The reaction of Sminthopsis crassicaudata to meat baits containing 1080: implications for assessing risk to non-target species.Crossref | GoogleScholarGoogle Scholar |

Smith, M. E., Linnell, J. D. C., Odden, J., and Swenson, J. E. (2000). Review of methods to reduce livestock depredation II. Aversive conditioning, deterrents and repellents. Acta Agriculturae Scandinavica. Section A. Animal Science 50, 304–315.

Speed, M. P., Ruxton, G. D., Blount, J. D., and Stephens, P. A. (2010). Diversification of honest signals in a predator–prey system. Ecology Letters 13, 744–753.
Diversification of honest signals in a predator–prey system.Crossref | GoogleScholarGoogle Scholar | 20597158PubMed |

Sterner, R. T. (1995). Cue enhancement of lithium-chloride-induced mutton/sheep aversions in coyotes. In ‘Twelfth Great Plains Wildlife Damage Control Workshop’. (Ed. R. E. Masters and J. G. Huggins.) pp. 92–95. (Noble Foundation: Ardmore: OK.)

Ternent, M. A., and Garshelis, D. L. (1999). Taste-aversion conditioning to reduce nuisance activity by black bears in a Minnesota military reservation. Wildlife Society Bulletin 27, 720–728.

Twigg, L. (2011). Fluoroacetate-bearing vegetation: can it reduce the impact of exotic mammals on wildlife conservation? Pacific Conservation Biology 17, 299–302.

Twigg, L. E., and King, D. R. (1991). The impact of fluoroacetate-bearing vegetation on native Australian fauna: a review. Oikos 61, 412–430.
The impact of fluoroacetate-bearing vegetation on native Australian fauna: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmslaktrs%3D&md5=c23e23040a47c5226c11e73a0b1bce27CAS |

Twigg, L. E., King, D. R., Bowen, L. H., Wright, G. R., and Eason, C. T. (1996). Fluoroacetate content of some species of the toxic Australian plant genus, Gastrolobium, and its environmental persistence. Natural Toxins 4, 122–127.
Fluoroacetate content of some species of the toxic Australian plant genus, Gastrolobium, and its environmental persistence.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xktlyktbg%3D&md5=6dd543639c2ca10ec7d5ff1e87eb9d49CAS | 8743933PubMed |

Twyford, K. L., Humphrey, P. G., Nunn, R. P., and Willoughby, L. (2000). Eradication of feral cats (Felis catus) from Gabo Island, south-east Victoria. Ecological Management & Restoration 1, 42–49.
Eradication of feral cats (Felis catus) from Gabo Island, south-east Victoria.Crossref | GoogleScholarGoogle Scholar |

Van Rensburg, P. J. J., Skinner, J. D., and Van Aarde, R. J. (1987). Effects of feline panleucopaenia on the population characteristics of feral cats on Marion Island. Journal of Applied Ecology 24, 63–73.
Effects of feline panleucopaenia on the population characteristics of feral cats on Marion Island.Crossref | GoogleScholarGoogle Scholar |

Veitch, C. R. (2001). The eradication of feral cats (Felis catus) from Little Barrier Island, New Zealand. New Zealand Journal of Zoology 28, 1–12.
The eradication of feral cats (Felis catus) from Little Barrier Island, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Wayne, A. F., Maxwell, M. A., Ward, C. G., Vellios, C. V., Wilson, I., Wayne, J. C., and Williams, M. R. (2015). Sudden and rapid decline of the abundant marsupial Bettongia penicillata in Australia. Oryx 49, 175–185.
Sudden and rapid decline of the abundant marsupial Bettongia penicillata in Australia.Crossref | GoogleScholarGoogle Scholar |

Webb, J. K., Brown, G. P., Child, T., Greenlees, M. J., Phillips, B. L., and Shine, R. (2008). A native dasyurid predator (common planigale, Planigale maculata) rapidly learns to avoid a toxic invader. Austral Ecology 33, 821–829.
A native dasyurid predator (common planigale, Planigale maculata) rapidly learns to avoid a toxic invader.Crossref | GoogleScholarGoogle Scholar |

Webb, J. K., Pearson, D., and Shine, R. (2011). A small dasyurid predator (Sminthopsis virginiae) rapidly learns to avoid a toxic invader. Wildlife Research 38, 726–731.
A small dasyurid predator (Sminthopsis virginiae) rapidly learns to avoid a toxic invader.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2015). Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proceedings of the National Academy of Sciences 112, 4531–4540.
Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXitlagsbg%3D&md5=6f492553270b65247cc9684fd04e8563CAS |

Wood, B., Tershy, B. R., Hermosillo, M. A., Donland, C. J., Sanchez-Pacheco, J. A., Keitt, B., Croll, D. A., Howald, G., and Biavaschi, N. (2002). Removing cats from islands in north-west Mexico. In ‘Turning the Tide: The Eradication of Invasive Species’. (Ed. C. R. Veitch and M. N. Clout.) pp. 374–380. (IUCN SSC Invasive Species Specialist Group: Gland, Switzerland.)

Zoran, D. L. (2002). The carnivore connection to nutrition in cats. Journal of the American Veterinary Medical Association 221, 1559–1567.
The carnivore connection to nutrition in cats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1Knsr8%3D&md5=01a6397200e96a488292c7d8c1696d18CAS | 12479324PubMed |