Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Spatially explicit capture–recapture analysis of bobcat (Lynx rufus) density: implications for mesocarnivore monitoring

Daniel H. Thornton A B D and Charles E. Pekins C
+ Author Affiliations
- Author Affiliations

A School of Environment, Washington State University, PO Box 642812, Pullman, WA 99164, USA.

B Panthera, 8 West 40th Street, 18th Floor, New York, NY 10018, USA.

C US Army Garrison-Fort Hood, DPW-Environmental-Natural Resources Management Branch, 4622 Engineer Drive, Fort Hood, TX 76544-5028, USA.

D Corresponding author. Email: daniel.thornton@wsu.edu

Wildlife Research 42(5) 394-404 https://doi.org/10.1071/WR15092
Submitted: 5 December 2014  Accepted: 24 July 2015   Published: 26 August 2015

Abstract

Context: Accurate density estimation is crucial for conservation and management of elusive species. Camera-trapping may provide an efficient method for density estimation, particularly when analysed with recently developed spatially explicit capture–recapture (SECR) models. Although camera-traps are employed extensively to estimate large carnivore density, their use for smaller carnivores has been limited. Moreover, while camera-trapping studies are typically conducted at local scales, the utility of analysing larger-scale patterns by combining multiple camera studies remains poorly known.

Aims: The goal of the present study was to develop a better understanding of the utility of SECR models and camera-trapping for the estimation of density of small carnivores at local and regional scales.

Methods: Based on data collected from camera-traps, we used SECR to examine density of bobcats (Lynx rufus) at four study sites in north-central Texas. We then combined our density estimates with previous estimates (from multiple methodologies) across the bobcat’s geographic range, and used linear regression to examine drivers of range-wide density patterns.

Key results: Bobcat densities averaged 13.2 per 100 km2 across all four study sites, and were lowest at the site in the most heavily modified landscape. Bobcat capture probability was positively related to forest cover around camera-trap sites. At the range-wide scale, 53% of the variation in density was explained by just two factors: temperature and longitude.

Conclusions: Our results demonstrate the utility of camera-traps, combined with SECR, to generate precise density estimates for mesocarnivores, and reveal the negative effects of landscape disturbance on bobcat populations. The associations revealed in our range-wide analysis, despite variability in techniques used to estimate density, demonstrate how a combination of multiple density estimates for a species can be used for large-scale inference. However, improvement in our understanding of biogeographic density patterns for mesocarnivores could be obtained from a greater number of camera-based density estimates across the range of a species, combined with meta-analytic techniques.

Implications: Camera-trapping and SECR should be more widely applied to generate local density estimates for many small and medium-sized carnivores, where at least a portion of the individuals are identifiable. If such estimates are more widely obtained, meta-analytic techniques could be used to test biogeographic predictions or for large-scale monitoring efforts.

Additional keywords: camera-trap, felid, Fort Hood, occupancy, range-wide, synthesis.


References

Anderson, E. M., and Lovallo, M. J. (2003). Bobcat and lynx. In ‘Wild Mammals of North America: Biology, Management, and Conservation’. (Eds G. A. Feldhammer, B. C. Thompson and J. A. Chapman.) pp. 758–786. (John Hopkins University Press: Baltimore, MD.)

Anile, S., Ragni, B., Randi, E., Mattucci, F., and Rovero, F. (2014). Wildcat population density on the Etna volcano, Italy: a comparison of density estimation methods. Journal of Zoology 293, 252–261.
Wildcat population density on the Etna volcano, Italy: a comparison of density estimation methods.Crossref | GoogleScholarGoogle Scholar |

Avgan, B., Zimmermann, F., Guntert, M., Arikan, F., and Breitenmoser, U. (2014). The first density estimation of an isolated Eurasian lynx population in southwest Asia. Wildlife Biology 20, 217–221.
The first density estimation of an isolated Eurasian lynx population in southwest Asia.Crossref | GoogleScholarGoogle Scholar |

Bailey, T. N. (1974). Social organization in a bobcat population. The Journal of Wildlife Management 38, 435–446.
Social organization in a bobcat population.Crossref | GoogleScholarGoogle Scholar |

Balme, G. A., Hunter, L. T. B., and Slotow, R. (2009). Evaluating methods for counting cryptic carnivores. The Journal of Wildlife Management 73, 433–441.
Evaluating methods for counting cryptic carnivores.Crossref | GoogleScholarGoogle Scholar |

Barea-Azcón, J. M., Virgós, E., Ballesteros-Duperón, E., Moleón, M., and Chirosa, M. (2007). Surveying carnivores at large spatial scales: a comparison of four broad-applied methods. Biodiversity and Conservation 16, 1213–1230.
Surveying carnivores at large spatial scales: a comparison of four broad-applied methods.Crossref | GoogleScholarGoogle Scholar |

Benson, J. F., Chamberlain, M. J., and Leopold, B. D. (2006). Regulation of space use in a solitary felid: population density or prey availability? Animal Behaviour 71, 685–693.
Regulation of space use in a solitary felid: population density or prey availability?Crossref | GoogleScholarGoogle Scholar |

Blanc, L., Marboutin, E., Gatti, S., and Gimenez, O. (2013). Abundance of rare and elusive species: empirical investigation of closed versus spatially explicit capture–recapture models with lynx as a case study. The Journal of Wildlife Management 77, 372–378.
Abundance of rare and elusive species: empirical investigation of closed versus spatially explicit capture–recapture models with lynx as a case study.Crossref | GoogleScholarGoogle Scholar |

Blankenship, T. L. (2000). Ecological response of bobcats to fluctuating prey populations on the Welder Wildlife Foundation. Dissertation, University of Texas-Kingsville.

Borchers, D. (2012). A non-technical overview of spatially explicit capture–recapture models. Journal für Ornithologie 152, S435–S444.
A non-technical overview of spatially explicit capture–recapture models.Crossref | GoogleScholarGoogle Scholar |

Borchers, D. L., and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64, 377–385.
Spatially explicit maximum likelihood methods for capture–recapture studies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1czhvVWlsA%3D%3D&md5=d0e0f845e21f4ae5d353c6332de13093CAS | 17970815PubMed |

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach. 2nd edn.’ (Springer: New York, NY.)

Chandler, R. B., and Royle, J. A. (2013). Spatially explicit models for inference about density in unmarked or partially marked populations. The Annals of Applied Statistics 7, 936–954.
Spatially explicit models for inference about density in unmarked or partially marked populations.Crossref | GoogleScholarGoogle Scholar |

Conner, L. M., Leopold, B. D., and Sullivan, K. J. (1992). Bobcat home range, density, and habitat use in east-central Mississippi. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 46, 147–158.

Davis, A. E. (2010). Estimating seasonal abundance of bobcats (Lynx rufus) and coyotes (Canis latrans) in east Texas using a photographic and genetic mark-recapture model. Master’s Thesis, Stephen F. Austin University.

De Bondi, N., White, J. G., Stevens, M., and Cooke, R. (2010). A comparison of the effectiveness of camera trapping and live trapping for sampling terrestrial small-mammal communities. Wildlife Research 37, 456–465.
A comparison of the effectiveness of camera trapping and live trapping for sampling terrestrial small-mammal communities.Crossref | GoogleScholarGoogle Scholar |

Diggs, G. M., Lipscomb, B. L., and O’Kennon, R. J. (1999). Introduction to north central Texas. In ‘Shiners & Mahler’s illustrated flora of north central Texas. SIDA, Botanical miscellany, Number 16’. pp. 20–62. (Botanical Research Institute of Texas: Fort Worth, TX.)

Donovan, T. M., Freeman, M., Abouelezz, H., Royar, K., Howard, A., and Mickey, R. (2011). Quantifying home range habitat requirements for bobcats (Lynx rufus) in Vermont, USA. Biological Conservation 144, 2799–2809.
Quantifying home range habitat requirements for bobcats (Lynx rufus) in Vermont, USA.Crossref | GoogleScholarGoogle Scholar |

Efford, M. (2004). Density estimation in live-trapping studies. Oikos 106, 598–610.
Density estimation in live-trapping studies.Crossref | GoogleScholarGoogle Scholar |

Efford, M. G. (2015). Secr: Spatially explicit capture-recapture models. R package version 2.9.4. Available at http://CRAN.R-project.org/package=secr

Foster, R. J., and Harmsen, B. J. (2012). A critique of density estimation from camera-trap data. The Journal of Wildlife Management 76, 224–236.
A critique of density estimation from camera-trap data.Crossref | GoogleScholarGoogle Scholar |

Fox, L. B. (1990). Ecology and population biology of the bobcat, Felis rufus, in New York. Dissertation, State University of New York.

George, S. L., and Crooks, K. R. (2006). Recreation and large mammal activity in an urban nature reserve. Biological Conservation 133, 107–117.
Recreation and large mammal activity in an urban nature reserve.Crossref | GoogleScholarGoogle Scholar |

Hamilton, D. A. (1982). ‘Ecology of the Bobcat in Missouri.’ (University of Missouri: Columbia, MO.)

Heilbrun, R. D., Silvy, N. J., Peterson, M. J., and Tewes, M. E. (2006). Estimating bobcat abundance using automatically triggered cameras. Wildlife Society Bulletin 34, 69–73.
Estimating bobcat abundance using automatically triggered cameras.Crossref | GoogleScholarGoogle Scholar |

Hijmans, R. J., Cameron, S. E., Parra, J. L., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |

Howe, E. J., Obbard, M. E., and Kyle, C. J. (2013). Combining data from 43 standardized surveys to estimate densities of female American black bears by spatially explicit capture–recapture. Population Ecology 55, 595–607.
Combining data from 43 standardized surveys to estimate densities of female American black bears by spatially explicit capture–recapture.Crossref | GoogleScholarGoogle Scholar |

Ivan, J. S., White, G. C., and Shenk, T. M. (2013). Using simulation to compare methods for estimating density from capture–recapture data. Ecology 94, 817–826.
Using simulation to compare methods for estimating density from capture–recapture data.Crossref | GoogleScholarGoogle Scholar |

Jin, S., Yang, L., Danielson, P., Homer, C., Fry, J., and Xian, G (2013). A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sensing of Environment 132, 159–175.
A comprehensive change detection method for updating the National Land Cover Database to circa 2011.Crossref | GoogleScholarGoogle Scholar |

Jones, J. H., and Smith, N. S. (1979). Bobcat density and prey selection in central Arizona. The Journal of Wildlife Management 43, 666–672.
Bobcat density and prey selection in central Arizona.Crossref | GoogleScholarGoogle Scholar |

Karanth, K. U. (1995). Estimating tiger Panthera tigris populations from camera trap data using capture–recapture models. Biological Conservation 71, 333–338.
Estimating tiger Panthera tigris populations from camera trap data using capture–recapture models.Crossref | GoogleScholarGoogle Scholar |

Kelly, M. J., and Holub, E. L. (2008). Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia. Northeastern Naturalist 15, 249–262.
Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia.Crossref | GoogleScholarGoogle Scholar |

Kitchings, J. T., and Story, J. D. (1984). Movements and dispersal of bobcats in eastern Tennessee. The Journal of Wildlife Management 48, 957–961.
Movements and dispersal of bobcats in eastern Tennessee.Crossref | GoogleScholarGoogle Scholar |

Knick, S. (1990). Ecology of bobcats relative to exploitation and a prey decline in southeastern Idaho. Wildlife Monographs 108, 3–42.

Larivière, S., and Walton, L. R. (1997). Lynx rufus. Mammalian Species 563, 1–8.
Lynx rufus.Crossref | GoogleScholarGoogle Scholar |

Larrucea, E. S., Serra, G., Jaeger, M. M., and Barrett, R. H. (2007). Censusing bobcats using remote cameras. Western North American Naturalist 67, 538–548.
Censusing bobcats using remote cameras.Crossref | GoogleScholarGoogle Scholar |

Lavoie, M., Collin, P.-Y., Lemieux, F., Jolicoeur, H., Canac-Marquie, P., and Lariviere, S. (2009). Understanding fluctuations in bobcat harvest at the northern limit of their range. The Journal of Wildlife Management 73, 870–875.
Understanding fluctuations in bobcat harvest at the northern limit of their range.Crossref | GoogleScholarGoogle Scholar |

Lawhead, D. N. (1984). Bobcat Lynx rufus home range, density and habitat preference in south-central Arizona. The Southwestern Naturalist 29, 105–113.
Bobcat Lynx rufus home range, density and habitat preference in south-central Arizona.Crossref | GoogleScholarGoogle Scholar |

Lembeck, M. (1986). Long term behavior and population dynamics of an un-harvested bobcat population in San Diego County. In ‘Cats of the World: Biology, Conservation, and Management.’ (Eds S. D. Miller and D. D. Everett.) pp. 305–310. (National Wildlife Federation: Washington, DC.)

Lovallo, M. J., and Anderson, E. M. (1996). Bobcat (Lynx rufus) home range size and habitat use in northwest Wisconsin. American Midland Naturalist 135, 241–252.
Bobcat (Lynx rufus) home range size and habitat use in northwest Wisconsin.Crossref | GoogleScholarGoogle Scholar |

McClintock, B. T., Conn, P. B., Alonso, R. S., and Crooks, K. R. (2013). Integrated modeling of bilateral photo-identification data in mark-recapture analyses. Ecology 94, 1464–1471.
Integrated modeling of bilateral photo-identification data in mark-recapture analyses.Crossref | GoogleScholarGoogle Scholar | 23951706PubMed |

Mendoza, E., Martineau, P. R., Brenner, E., and Dirzo, R. (2011). A novel method to improve individual animal identification based on camera-trapping data. The Journal of Wildlife Management 75, 973–979.
A novel method to improve individual animal identification based on camera-trapping data.Crossref | GoogleScholarGoogle Scholar |

Monterroso, P., Rich, L. N., Serronha, A., Ferreras, P., and Alves, P. C. (2014). Efficiency of hair snares and camera traps to survey mesocarnivore populations. European Journal of Wildlife Research 60, 279–289.
Efficiency of hair snares and camera traps to survey mesocarnivore populations.Crossref | GoogleScholarGoogle Scholar |

Nielsen, C. K., and Woolf, A. (2001). Spatial organization of bobcats (Lynx rufus) in southern Illinois. American Midland Naturalist 146, 43–52.
Spatial organization of bobcats (Lynx rufus) in southern Illinois.Crossref | GoogleScholarGoogle Scholar |

Noss, A. J., Gardner, B., Maffei, L., Cuéllar, E., Montaňo, R., Romero-Muňoz, A., Sollmann, R., and O’Connell, A. F. (2012). Comparison of density estimation methods for mammal populations with camera traps in the Kaa-Iya del Gran Chaco landscape. Animal Conservation 15, 527–535.
Comparison of density estimation methods for mammal populations with camera traps in the Kaa-Iya del Gran Chaco landscape.Crossref | GoogleScholarGoogle Scholar |

O’Brien, T. G. (2011). Abundance, density, and relative abundance: a conceptual framework. In ‘Camera Traps in Animal Ecology’. (Eds A. F. O’Connell, J. D. Nichols and K. U. Karanth.) pp. 71–96. (Springer: Tokyo.)

Obbard, M. E., Howe, E. J., and Kyle, C. J. (2010). Empirical comparison of density estimators for large carnivores. Journal of Applied Ecology 47, 76–84.
Empirical comparison of density estimators for large carnivores.Crossref | GoogleScholarGoogle Scholar |

Ordeñana, M. A., Crooks, K. R., Boydston, E. E., Fisher, R. N., Lyren, L. M., Siudyla, S., Haas, C. D., Harris, S., Hathaway, S. A., Turschak, G. M., Miles, A. K., and Van Vuren, D. H. (2010). Effects of urbanization on carnivore species distribution and richness. Journal of Mammalogy 91, 1322–1331.
Effects of urbanization on carnivore species distribution and richness.Crossref | GoogleScholarGoogle Scholar |

Peers, M. J. L., Thornton, D. H., and Murray, D. L. (2012). Reconsidering the specialist-generalist paradigm in niche breadth dynamics: resource gradient selection by Canada lynx and bobcat. PLoS One 7, e51488.
Reconsidering the specialist-generalist paradigm in niche breadth dynamics: resource gradient selection by Canada lynx and bobcat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2qtrzI&md5=7aaabd9351c27e97f460899ec6225b35CAS |

Peterson, A. T., Soberon, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., and Araújo, M. B. (2011). ‘Ecological Niches and Geographic Distributions.’ (Princeton University Press: Princeton, NJ.)

Provost, E. E., Nielson, C. A., and Marshall, A. D. (1973). Population dynamics and behavior of the bobcat. In ‘World’s Cats, Vol. 1’. (Ed. R. L. Eaton.) pp. 42–67. (World Wildlife Safari: Winston, OR.)

Ray, J. C., Redford, K. H., Steneck, R. S., and Berger, J. (eds) (2005). ‘Large Carnivores and the Conservation of Biodiversity.’ (Island Press: Washington, DC.)

Reding, D. M., Bronikowski, A. M., Johnson, W. E., and Clark, W. R. (2012). Pleistocene and ecological effects on continental-scale genetic differentiation in the bobcat (Lynx rufus). Molecular Ecology 21, 3078–3093.
Pleistocene and ecological effects on continental-scale genetic differentiation in the bobcat (Lynx rufus).Crossref | GoogleScholarGoogle Scholar | 22548482PubMed |

Reding, D. M., Cushman, S. A., Gosselink, T. E., and Clark, W. R. (2013). Linking movement behavior and fine-scale genetic structure to model landscape connectivity for bobcats (Lynx rufus). Landscape Ecology 28, 471–486.
Linking movement behavior and fine-scale genetic structure to model landscape connectivity for bobcats (Lynx rufus).Crossref | GoogleScholarGoogle Scholar |

Reemts, C. M., and Teague, J. (2007). Vegetation classification and mapping of Fort Hood. In ‘Endangered Species Monitoring and Management at Fort Hood, Texas: 2007 Annual Report’. (Eds J. D. Cornelius, T. J. Hayden and P. J. Guertin.) (The Nature Conservancy, Fort Hood Project: Fort Hood, TX.)

Rich, L. N., Kelly, M. J., Sollmann, R., Noss, A. J., Maffei, L., Arispe, R. L., Paviolo, A., De Angelo, C. D., Di Blanco, Y. E., and Di Bitetti, M. S. (2014). Comparing capture-recapture, mark-resight, and spatial mark-resight models for estimating puma densities via camera traps. Journal of Mammalogy 95, 382–391.
Comparing capture-recapture, mark-resight, and spatial mark-resight models for estimating puma densities via camera traps.Crossref | GoogleScholarGoogle Scholar |

Riley, S. P. D., Sauvajot, R. M., Fuller, T. K., York, E. C., Kamradt, D. A., Bromley, C., and Wayne, R. K. (2003). Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conservation Biology 17, 566–576.
Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California.Crossref | GoogleScholarGoogle Scholar |

Rinehart, K. A., Elbroch, L. M., and Wittmer, H. U. (2014). Common biases in density estimation based on home range overlap with reference to pumas in Patagonia. Wildlife Biology 20, 19–26.
Common biases in density estimation based on home range overlap with reference to pumas in Patagonia.Crossref | GoogleScholarGoogle Scholar |

Roberts, N. M., and Crimmins, S. M. (2010). Bobcat population status and management in North America: evidence of large-scale population increase. Journal of Fish and Wildlife Management 1, 169–174.
Bobcat population status and management in North America: evidence of large-scale population increase.Crossref | GoogleScholarGoogle Scholar |

Rolley, R. E. (1985). Dynamics of a harvested bobcat population in Oklahoma. The Journal of Wildlife Management 49, 283–292.
Dynamics of a harvested bobcat population in Oklahoma.Crossref | GoogleScholarGoogle Scholar |

Royle, J. A., Nichols, J. D., Karanth, K. U., and Gopalaswamy, A. M. (2009). A hierarchical model for estimating density in camera-trap studies. Journal of Applied Ecology 46, 118–127.
A hierarchical model for estimating density in camera-trap studies.Crossref | GoogleScholarGoogle Scholar |

Rucker, R. A., Kennedy, M. L., Heidt, G. A., and Harvey, M. J. (1989). Population density, movements, and habitat use of bobcats in Arkansas. The Southwestern Naturalist 34, 101–108.
Population density, movements, and habitat use of bobcats in Arkansas.Crossref | GoogleScholarGoogle Scholar |

Ruell, E. W., Riley, S. P. D., Douglas, M. R., Pollinger, J. P., and Crooks, K. R. (2009). Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture–recapture sampling. Journal of Mammalogy 90, 129–135.
Estimating bobcat population sizes and densities in a fragmented urban landscape using noninvasive capture–recapture sampling.Crossref | GoogleScholarGoogle Scholar |

Schmidly, D. J. (2002). Twentieth-century changes in Texas mammal fauna. In ‘Texas Natural History: a Century of Change’. pp. 439–441. (Texas Tech University Press: Lubbock, TX.)

Schmidly, D. J. (2004). Bobcat Lynx rufus. In ‘The Mammals of Texas, Sixth Edition’ (Ed. D. J. Schmidly.) pp. 204–207. (University of Texas Press: Austin, TX.)

Sollmann, R., Furtado, M., Gardner, B., Hofer, H., Jácamo, A. T. A., Tôrres, M., and Silviera, L. (2011). Improving density estimates for elusive carnivores: accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil. Biological Conservation 144, 1017–1024.
Improving density estimates for elusive carnivores: accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil.Crossref | GoogleScholarGoogle Scholar |

Sollmann, R., Gardner, B., and Belant, J. L. (2012). How does spatial study design influence density estimates from spatial capture-recapture models. PLoS One 7, e34575.
How does spatial study design influence density estimates from spatial capture-recapture models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmslaiurY%3D&md5=25edd46ec2fc88c84aa01d5ae1535faaCAS | 22539949PubMed |

Stricker, H. K., Belant, J. L., Beyer, D. E., Kanefsky, J., Scribner, K. T., Etter, D. R., and Fierke, J. (2012). Use of modified snares to estimate bobcat abundance. Wildlife Society Bulletin 36, 257–263.
Use of modified snares to estimate bobcat abundance.Crossref | GoogleScholarGoogle Scholar |

Sugimoto, T., Nagata, J., Aramilev, V. V., and McCullough, D. R. (2012). Population size estimation of Amur tigers in Russian Far East using noninvasive genetic samples. Journal of Mammalogy 93, 93–101.
Population size estimation of Amur tigers in Russian Far East using noninvasive genetic samples.Crossref | GoogleScholarGoogle Scholar |

Sun, C., Fuller, A. K., and Royle, J. A. (2014). Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. PLoS One 9, e88025.
Trap configuration and spacing influences parameter estimates in spatial capture-recapture models.Crossref | GoogleScholarGoogle Scholar | 24505361PubMed |

Sunquist, M. E., and Sunquist, F. (2002). ‘Wild Cats of the World.’ (The University of Chicago Press: Chicago, IL.)

Symmank, M. E., Temple, A., Austin, S. F., and Box, S. (2008). Estimating bobcat abundance in east Texas using infrared-triggered cameras. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 62, 64–69.

Tigas, L. A., Van Vuren, D. H., and Sauvajot, R. M. (2002). Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biological Conservation 108, 299–306.
Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment.Crossref | GoogleScholarGoogle Scholar |

Tobler, M. W., and Powell, G. V. N. (2013). Estimating jaguar densities with camera traps: problems with current designs and recommendations for future studies. Biological Conservation 159, 109–118.
Estimating jaguar densities with camera traps: problems with current designs and recommendations for future studies.Crossref | GoogleScholarGoogle Scholar |

Tobler, M. W., Carrillo-Percastegui, S. E., Zuñiga Hartley, A., and Powell, G. V. N. (2013). High jaguar densities and large population sizes in the core habitat of southwestern Amazon. Biological Conservation 159, 375–381.
High jaguar densities and large population sizes in the core habitat of southwestern Amazon.Crossref | GoogleScholarGoogle Scholar |

Tôrres, N. M., de Marco, P., Santos, T., Silviera, L., Jácamo, A. T. A., and Diniz-Filho, J. A. F. (2012). Can species distribution modeling provide estimates of population densities? A case study with jaguars in the Neotropics. Diversity & Distributions 18, 615–627.
Can species distribution modeling provide estimates of population densities? A case study with jaguars in the Neotropics.Crossref | GoogleScholarGoogle Scholar |

Toweill, D. E. (1986). Resource partitioning by bobcats and coyotes in a coniferous forest. Master’s Thesis, Oregon State University.

Tucker, S. A., Clark, W. R., and Gosselink, T. E. (2008). Space use and habitat selection by bobcats in the fragmented landscape of south-central Iowa. The Journal of Wildlife Management 72, 1114–1124.
Space use and habitat selection by bobcats in the fragmented landscape of south-central Iowa.Crossref | GoogleScholarGoogle Scholar |

Vine, S. J., Crowther, M. S., Lapidge, S. J., Dickman, C. R., Mooney, N., Piggott, P., and English, A. W. (2009). Comparison of methods to detect rare and cryptic species: a case study using the red fox (Vulpes vulpes). Wildlife Research 36, 436–446.
Comparison of methods to detect rare and cryptic species: a case study using the red fox (Vulpes vulpes).Crossref | GoogleScholarGoogle Scholar |

Wassmer, D. A., Guenther, D. D., and Layne, J. N. (1988). Ecology of the bobcat in south-central Florida. Bulletin of the Florida State Museum Biological Sciences 33, 159–228.

Zezulak, D. S., and Schwab, R. G. (1979). A comparison of density, home-range, and habitat utilization of bobcat populations at Lava Beds and Joshua Tree National Monuments, California. Proceedings of the Bobcat Research Conference of the National Wildlife Federation Science Technical Series 6, 74–79.