Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

A model for assessing mammal contribution of Escherichia coli to a Texas floodplain

Israel D. Parker A G , Roel R. Lopez B , Raghupathy Karthikeyan C , Nova J. Silvy D , Donald S. Davis E and James C. Cathey F
+ Author Affiliations
- Author Affiliations

A Texas A&M Institute of Renewable Natural Resources, 1500 Research Parkway A110, 2260 TAMU, College Station, TX 77843-2260, USA.

B Texas A&M Institute of Renewable Natural Resources, 1919 Oakwell Farms Parkway, Suite 100, San Antonio, TX 78218, USA.

C Texas A&M University, Biological and Agricultural Engineering, 306B Scoates Hall, 2117 TAMU, College Station, TX 77843-2117, USA.

D Texas A&M University, Wildlife and Fisheries Sciences, 311A Nagle Hall, TAMU 2258, College Station, TX 77843-2258, USA.

E Texas A&M University, Veterinary Pathobiology, 4467 TAMU, College Station, TX 77843-4467, USA.

F Texas A&M University, Wildlife and Fisheries Sciences, 112 Nagle Hall, TAMU 2258, College Station, TX 77843-2258, USA.

G Corresponding author. Email: israel.parker@ag.tamu.edu

Wildlife Research 42(3) 217-222 https://doi.org/10.1071/WR15015
Submitted: 28 October 2014  Accepted: 9 March 2015   Published: 10 June 2015

Abstract

Context: Free-ranging mammals contribute to faecal pollution in United States water bodies. However, research into wildlife impact on water quality is dependent upon unreliable data (e.g. data uncertainty, unknown importance of parameters).

Aims: Our goal was to determine the potential impacts of common free-ranging mammal species and their management on Escherichia coli in the study floodplain. Our objectives for this research were to construct a model from study area- and literature-derived data, determine important species for E. coli deposition, and conduct sensitivity analyses on model parameters to focus future research efforts.

Methods: We constructed a model that incorporated parameters for four wildlife species known to contribute E. coli in central Texas: raccoons (Procyon lotor), white-tailed deer (Odocoileus virginianus), Virginia opossums (Didelphis virginiana), and wild pigs (Sus scrofa). These parameters were (1) population density estimates, (2) defaecation rates, (3) defaecation areas, (4) E. coli concentration in faecal material estimates, and (5) E. coli survival. We conducted sensitivity analyses on the model parameters to determine relative importance of each parameter and areas for additional study.

Key results: We found that adjustment of raccoon and Virginia opossum population densities had higher impacts on E. coli in the floodplain than similar changes in other species across all spatial and seasonal variations. We also found that the changes in E. coli survival, E. coli concentration in raccoon faecal material, and defaecation rates had the highest impacts on E. coli in the floodplain.

Conclusions: Our sensitivity analyses indicated that the largest impacts to projected E. coli loads were from changes in defaecation rates followed by E. coli concentration in faecal material and E. coli survival. Watershed planners, ranchers, and regulators must be cautioned that faecal deposition patterns are location specific and could significantly impact which species are considered the most important contributors.

Implications: Although all parameters require more research, we recommend that researchers determine defaecation rates for contributing species due to their relatively large impacts on E. coli in comparison to the other parameters. We also suggest additional research in free-ranging wildlife faecal morphology (form and structure) and area of deposition. Finally, species-specific E. coli survival studies for free-ranging wildlife should be conducted.

Additional keywords: faecal contamination, impaired, water quality.


References

Acevedo, P., Vicente, J., Hōfle, U., Cassinello, J., Ruiz-Fons, F., and Gortazar, C. (2007). Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiology and Infection 135, 519–527.
Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7otlGhuw%3D%3D&md5=4139d6497a9f9e0461db0603b223791dCAS | 16893488PubMed |

Anderson, S. J., and Stone, C. P. (1994). Indexing sizes of feral pig populations in a variety of Hawaiian natural areas. Transactions of the Western Section of the Wildlife Society 30, 26–39.

Bach, S. J., Stanford, K., and McAllister, T. A. (2005). Survival of Escherichia coli O157:H7 in feces from corn- and barley-fed steers. FEMS Microbiology Letters 252, 25–33.
Survival of Escherichia coli O157:H7 in feces from corn- and barley-fed steers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFWht7nJ&md5=164132e0bb0bac2420fb916b4c589440CAS | 16299922PubMed |

Borel, K. E., Karthikeyan, R., Smith, P. K., Gregory, L., and Srinivasan, R. (2012). Estimating daily potential E. coli loads in rural Texas watersheds using Spatially Explicit Load Enrichment Calculation Tool (SELECT). Texas Water Journal 3, 42–58.

Claridge, A. W., Mifsud, G., Dawson, J., and Saxon, M. J. (2004). Use of infrared digital cameras to investigate the behaviour of cryptic species. Wildlife Research 31, 645–650.

Fischer, J. R., Zhao, T., Doyle, M. P., Goldberg, M. R., Brown, C. A., Sewell, C. T., Kavanaugh, D. M., and Bauman, C. D. (2001). Experimental and field studies of Escherichia coli O157:H7 in white-tailed deer. Applied and Environmental Microbiology 67, 1218–1224.
| 1:CAS:528:DC%2BD3MXhslSjsLs%3D&md5=a6eca0cb4374cde6f6e1b5ca17830ecfCAS | 11229913PubMed |

Fortmann-Roe, S. (2014). Insight Maker: a general-purpose tool for web-based modeling and simulation. Simulation Modelling Practice and Theory 47, 28–45.
Insight Maker: a general-purpose tool for web-based modeling and simulation.Crossref | GoogleScholarGoogle Scholar |

Grant, W. E., and Swannack, T. M. (2008). ‘Ecological Modeling: a Common-sense Approach to Theory and Practice.’ (Blackwell: Malden, MA.)

Graves, H. B. (1984). Behavior and ecology of wild and feral swine (Sus scrofa). Journal of Animal Science 58, 482–492.

Hone, J., Pech, R., and Yip, P. (1992). Estimation of the dynamics and rate of transmission of classical swine fever (hog cholera) in wild pigs. Epidemiology and Infection 108, 377–386.
Estimation of the dynamics and rate of transmission of classical swine fever (hog cholera) in wild pigs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383lvVGisA%3D%3D&md5=731cb675b763bd928dc04e992b4373ebCAS | 1582476PubMed |

Jeganathan, P., Green, R. E., Bowden, C. G. R., Norris, K., Pain, D., and Rahmani, A. (2002). Use of tracking strips and automatic cameras for detecting critically endangered Jourdan’s coursers Rhinoptilus bitorquatus in scrub jungle in Andhra Pradesh, India. Oryx 36, 182–188.

Kaller, M. D., Hudson, J. D., Achberger, E. C., and Kelso, W. E. (2007). Feral hog research in western Louisiana: expanding populations and unforeseen consequences. Human–Wildlife Conflicts 1, 168–177.

Kasparian, M. A., Hellgren, E. C., Ginger, S. M., Levesque, L. P., Clark, J. E., Winkelman, D. L., and Engle, D. E. (2004). Population characteristics of Virginia opossum in the Cross Timbers during raccoon reduction. American Midland Naturalist 151, 154–163.
Population characteristics of Virginia opossum in the Cross Timbers during raccoon reduction.Crossref | GoogleScholarGoogle Scholar |

Krebs, C. J. (1999). ‘Ecological Methodology.’ (Addison-Welsey: Menlo Park, CA.)

Kudva, I. T., Blanch, K., and Hovde, C. J. (1998). Analysis of Escherichia coli 0157:H7 survival in ovine or bovine manure and manure slurry. Applied and Environmental Microbiology 64, 3166–3174.
| 1:CAS:528:DyaK1cXmtVajsLw%3D&md5=a3fa11f07dfa743d0e22b0a30ace4f33CAS | 9726855PubMed |

Lamendella, R., Santo Domingo, J. W., Oerther, D. B., Vogel, J. R., and Stoeckel, D. M. (2007). Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene. FEMS Microbiology Ecology 59, 651–660.
Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVyqu7g%3D&md5=9ca0b796a295693c4c8c8a6214ee924eCAS | 17069624PubMed |

Lipp, E. K., Farrah, S. A., and Rose, J. B. (2001). Assessment and impact of microbial fecal pollution and human enteric pathogens in a coastal community. Marine Pollution Bulletin 42, 286–293.
Assessment and impact of microbial fecal pollution and human enteric pathogens in a coastal community.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFCrsb4%3D&md5=64f6a19de9dd4a721f04e6ccf450d3beCAS | 11381749PubMed |

Main, M. B., and Richardson, L. W. (2002). Response of wildlife to prescribed fire in southwest Florida pine flatwoods. Wildlife Society Bulletin 30, 213–221.

Mapston, M. E. (2007). Feral hogs in Texas. Agrilife Extension B-6149 03-07, Texas A&M University, College Station, USA.

McCleery, R. A., Foster, G. W., Lopez, R. R., Peterson, M. J., Forrester, D. J., and Silvy, N. J. (2005). Surveys of raccoons on Key Largo, Florida, USA, for Baylisascaris procyonis. Journal of Wildlife Diseases 41, 250–252.
Surveys of raccoons on Key Largo, Florida, USA, for Baylisascaris procyonis.Crossref | GoogleScholarGoogle Scholar | 15827232PubMed |

Meays, C. L., Broersma, K., Nordin, R., and Mazumder, A. (2005). Survival of Escherichia coli in beef cattle fecal pats under different levels of solar exposure. Rangeland Ecology and Management 58, 279–283.
Survival of Escherichia coli in beef cattle fecal pats under different levels of solar exposure.Crossref | GoogleScholarGoogle Scholar |

Naiman, R. J. (1988). Animal influences on ecosystem dynamics. Bioscience 38, 750–752.
Animal influences on ecosystem dynamics.Crossref | GoogleScholarGoogle Scholar |

National Oceanic and Atmospheric Administration (NOAA). (2015). College Station climate data. Available at: http://www.srh.noaa.gov/hgx/?n=climate_cll [verified 2 January 2015].

Natural Resources Conservation Service (NRCS). (2010). Soil data viewer. United States Department of Agriculture. Available at: http://soildataviewer.nrcs.usda.gov/ [verified 10 April 2010].

Ohio State University Extension (2006). Ohio livestock manure management guide. Bulletin 604-06. The Ohio State University, Columbus, OH.

Pachepsky, Y. A., Sadeghi, A. M., Bradford, S. A., Shelton, D. R., Guber, A. K., and Dao, T. (2006). Transport and fate of manure-borne pathogens: modeling perspective. Agricultural Water Management 86, 81–92.
Transport and fate of manure-borne pathogens: modeling perspective.Crossref | GoogleScholarGoogle Scholar |

Padia, R., Karthikeyan, R., Mukhtar, S., and Parker, I. D. (2011). Occurrence and fate of E. coli from various non-point sources in a subtropical watershed. Journal of Natural and Environmental Sciences 3, 9–18.

Parker, I. D. (2010). The role of free-ranging mammals in the deposition of Escherichia coli into a Texas floodplain. Dissertation, Texas A&M University, College Station, TX.

Parker, I. D., Lopez, R. R., Padia, R., Gallagher, M., Karthikeyan, R., Cathey, J. C., Silvy, N. J., and Davis, D. S. (2013). Role of free-ranging mammals in the deposition of Escherichia coli into a Texas floodplain. Wildlife Research 40, 570–577.
Role of free-ranging mammals in the deposition of Escherichia coli into a Texas floodplain.Crossref | GoogleScholarGoogle Scholar |

Roberts, C. W., Pierce, B. L., Braden, A. W., Lopez, R. R., Silvy, N. J., Frank, P. A., and Ransom Jr, D. (2005). Comparison of camera and road survey estimates for white-tailed deer. Journal of Wildlife Management 70, 263–267.

Renter, D. G., Sargeant, J. M., Hygnstorm, S. E., Hoffman, J. D., and Gillespie, J. R. (2001). Escherichia coli in free-ranging deer in Nebraska. Journal of Wildlife Diseases 37, 755–760.
Escherichia coli in free-ranging deer in Nebraska.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2FivFCktg%3D%3D&md5=2de71aea6dacd4df791790baf43530cbCAS | 11763739PubMed |

Riebschleager, K. J., Karthikeyan, R., Srinivasan, R., and McKee, K. (2012). Estimating potential E. coli sources in a watershed using spatially explicit modelling techniques. Journal of the American Water Resources Association 48, 745–761.

Rogers, L. L. (1987). Seasonal changes in defecation rates of free-ranging white-tailed deer. The Journal of Wildlife Management 51, 300–333.

Scott, L., McGee, P., Sheridan, J. J., Earley, B., and Leonard, N. (2006). A comparison of the survival in feces and water of Escherichia coli O157:H7 grown under laboratory conditions or obtained from cattle feces. Journal of Food Protection 69, 6–11.
| 1:STN:280:DC%2BD28%2FivFKmsw%3D%3D&md5=47f096d18d73c416619445bfbe143a75CAS | 16416893PubMed |

Sorvillo, F., Ash, L. R. W., Berlin, O. G., Yatabe, J., Degiorgio, C., and Morse, S. A. (2002). Baylisascaris procyonis: an emerging helminthic zoonosis. Emerging Infectious Diseases 8, 355–359.
Baylisascaris procyonis: an emerging helminthic zoonosis.Crossref | GoogleScholarGoogle Scholar | 11971766PubMed |

Steets, B., and Holden, P. (2003). A mechanistic model of runoff-associated fecal coliform fate and transport through a coastal lagoon. Water Research 37, 589–698.
| 1:CAS:528:DC%2BD38Xpt12ntLk%3D&md5=4ae18eb39615279ebdf39b87a27a8ab1CAS | 12688694PubMed |

Teague, A., Karthikeyan, R., Babbar-Sebens, M., Srinivasan, R., and Persyn, R. A. (2009). Spatially explicit load enrichment calculation tool to identify potential E. coli sources in watersheds. Transactions of the American Society of Agricultural and Biological Engineers 52, 1109–1120.

Trolle, M. (2003). Mammal survey in the southeastern Pantanal, Brazil. Biodiversity and Conservation 12, 823–836.
Mammal survey in the southeastern Pantanal, Brazil.Crossref | GoogleScholarGoogle Scholar |

Trolle, M., and Kéry, M. (2005). Camera-trap studies of ocelot and other secretive mammals in the northern Pantanal. Mammalia 69, 405–412.

Turner, M. G., Arthaud, G. J., Engstrom, R. T., Hejl, S. J., and Liu, J. (1995). Usefulness of spatially explicit population models in land management. Ecological Applications 5, 12–16.
Usefulness of spatially explicit population models in land management.Crossref | GoogleScholarGoogle Scholar |

US Environmental Protection Agency (USEPA). (2008). List of impaired waters. Available at: http://oaspub.epa.gov/tmdl/ [verified 28 March 2008].

US Environmental Protection Agency (USEPA). (2014). Polluted runoff: nonpoint source pollution. Available at: http://water.epa.gov/polwaste/nps/ [verified 5 September 2014].

Wang, G., Zhao, T., and Doyle, M. P. (1996). Fate of enterohemorrhagic Escherichia coli 0157:H7 in bovine feces. Applied and Environmental Microbiology 62, 2567–2570.
| 1:CAS:528:DyaK28XjvFGmsb4%3D&md5=be3e0ff87124bf2039bcda0aaffee479CAS | 8779595PubMed |

Zhang, H., and Huang, G. H. (2011). Assessment of non-point source pollution using a spatial multi-criteria analysis approach. Ecological Modelling 222, 313–321.
Assessment of non-point source pollution using a spatial multi-criteria analysis approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFGmsLbE&md5=a6fcc7f40f7efa64b431e1dcf9720c2fCAS |