Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Using site-occupancy models to prepare for the spread of chytridiomyosis and identify factors affecting detectability of a cryptic susceptible species, the Tasmanian tree frog

Scott D. Cashins A , Annie Philips B and Lee F. Skerratt A C
+ Author Affiliations
- Author Affiliations

A One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Qld 4811, Australia.

B Resource Management and Conservation Division of the Department of Primary Industries, Parks, Water and Environment, PO Box 44, Hobart, Tas. 7000, Australia.

C Corresponding author. Email: lee.skerratt@jcu.edu.au

Wildlife Research 42(5) 405-413 https://doi.org/10.1071/WR14183
Submitted: 11 September 2014  Accepted: 6 July 2015   Published: 9 September 2015

Abstract

Context: The global reduction of amphibian biodiversity as a result of the disease chytridiomycosis (caused by the fungus Batrachochytrium dendrobatidis; Bd) has highlighted the need to accurately detect local population declines in association with Bd presence. Although Bd has spread globally, some remote regions such as the Tasmanian Wilderness World Heritage Area (1.40 million ha; TWWHA) in Australia, remain largely, but not entirely, disease free. The Tasmanian tree frog (Litoria burrowsae) resides primarily within TWWHA boundaries, and is believed to be susceptible to chytridiomycosis.

Aims: In the absence of historical abundance data, we used a single-season multi-state site-occupancy model to investigate the impact of Bd on L. burrowsae populations, on factors affecting species detection and to inform ongoing surveillance and conservation.

Methods: We recorded frog detection and ranked call intensity (estimation of population size) from repeated independent surveys within a season to estimate the role of covariates, such as presence of Bd and environmental variables, on species occupancy and detection probability.

Key results: Modelling revealed large frog populations are more likely to be present at naturally formed than human-formed ponds, strong winds negatively affect detection of populations, and time after sunset affects detection of large populations. Large frog populations were more likely to be Bd-negative; however, models including Bd presence were not well supported, in part a result of the small number of Bd-positive sites recorded.

Conclusions and Implications: The utility of site-occupancy modelling in understanding the impact of disease on populations is little known, but has the potential to improve the accuracy and efficiency of many conservation programs.

Additional keywords: amphibian decline, Batrachochytrium dendrobatidis, disease monitoring, ecological monitoring, Litoria burrowsae.


References

Adams, M. J., Chelgren, N. D., Reinitz, D., Cole, R. A., Rachowicz, L. J., Galvan, S., McCreary, B., Pearl, C. A., Bailey, L. L., Bettaso, J., Bull, E. L., and Leu, M. (2010). Using occupancy models to understand the distribution of an amphibian pathogen, Batrachochytrium dendrobatidis. Ecological Applications 20, 289–302.
Using occupancy models to understand the distribution of an amphibian pathogen, Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar | 20349848PubMed |

Alford, R. A., and Richards, S. J. (1999). Global amphibian declines: a problem in applied ecology. Annual Review of Ecology and Systematics 30, 133–165.
Global amphibian declines: a problem in applied ecology.Crossref | GoogleScholarGoogle Scholar |

Bailey, L. L., Hines, J. E., Nichols, J. D., and MacKenzie, D. I. (2007). Sampling design trade-offs in occupancy studies with imperfect detection: examples and software. Ecological Applications 17, 281–290.
Sampling design trade-offs in occupancy studies with imperfect detection: examples and software.Crossref | GoogleScholarGoogle Scholar | 17479851PubMed |

Berger, L., and Skeratt, L. F. (2012). ‘Disease strategy chytridiomycosis (infection with Batrachochytrium dendrobatidis). Version 1, 2012.’ (Department of Sustainability, Environment, Water, Populations and Communities, Public Affairs, Commonwealth of Australia: Canberra.) Available at http://www.environment.gov.au/system/files/resources/387d3e66-3cdc-4676-8fed-759328277da4/files/chytrid-fungus-manual.pdf [Accessed 5 August 2015]

Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L., Slocombe, R., Ragan, M. A., Hyatt, A. D., McDonald, K. R., Hines, H. B., Lips, K. R., Marantelli, G., and Parkes, H. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences of the United States of America 95, 9031–9036.
Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFaltbc%3D&md5=b48be7b6783ba6c1a84b7f990179d4deCAS | 9671799PubMed |

Blaustein, A. R., and Wake, D. B. (1990). Declining amphibian populations: a global phenomenon. Trends in Ecology & Evolution 5, 203–204.
Declining amphibian populations: a global phenomenon.Crossref | GoogleScholarGoogle Scholar |

Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A., and Hyatt, A. D. (2004). Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60, 141–148.
| 1:CAS:528:DC%2BD2cXptVOlsr0%3D&md5=27f88432fad30b3eb0fb580f0f30a4c2CAS | 15460858PubMed |

Cooch, E. G., Conn, P. B., Ellner, S. P., Dobson, A. P., and Pollock, K. H. (2012). Disease dynamics in wild populations: modeling and estimation: a review. Journal für Ornithologie 152, 485–509.
Disease dynamics in wild populations: modeling and estimation: a review.Crossref | GoogleScholarGoogle Scholar |

Daszak, P., Cunningham, A. A., and Hyatt, A. D. (2001). Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Tropica 78, 103–116.
Anthropogenic environmental change and the emergence of infectious diseases in wildlife.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M3mtVSmsw%3D%3D&md5=956eda946a0927ef8e6ebe54c6ef6febCAS | 11230820PubMed |

Dobson, A., and Foufopoulos, J. (2001). Emerging infectious pathogens of wildlife. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 356, 1001–1012.
Emerging infectious pathogens of wildlife.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvntVChsA%3D%3D&md5=7c044b33fa571ddba2833e390aa4d24fCAS | 11516378PubMed |

Driessen, M. M., and Mallick, S. A. (2003). The vertebrate fauna of the Tasmanian Wilderness World Heritage Area. Pacific Conservation Biology 9, 187.

Garland, S., Baker, A., Phillott, A. D., and Skerratt, L. F. (2009). BSA reduces inhibition in a TaqMan® assay for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 4, 1–4.

Grogan, L. F., Berger, L., Rose, K., Grillo, V., Cashins, S. D., and Skerratt, L. F. (2014). Surveillance for emerging biodiversity diseases of wildlife. PLoS Pathogens 10, e1004015.
Surveillance for emerging biodiversity diseases of wildlife.Crossref | GoogleScholarGoogle Scholar | 24875394PubMed |

Heard, G. W., Scroggie, M. P., Clemann, N., and Ramsey, D. S. L. (2013). Wetland characteristics influence disease risk for a threatened amphibian. Ecological Applications 24, 650–662.
Wetland characteristics influence disease risk for a threatened amphibian.Crossref | GoogleScholarGoogle Scholar |

Hyatt, A. D., Boyle, D. G., Olsen, V., Boyle, D. B., Berger, L., Obendorf, D., Dalton, A., Kriger, K., Hero, M., Hines, H., Phillot, R., Campbell, R., Marantelli, G., Gleason, F., and Colling, A. (2007). Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 73, 175–192.
Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkslWhs7k%3D&md5=5d499f0c8c9c0e863c9ad029f454ac1cCAS | 17330737PubMed |

Johnson, M., and Speare, R. (2005). Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Diseases of Aquatic Organisms 65, 181–186.
Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment.Crossref | GoogleScholarGoogle Scholar | 16119886PubMed |

Lachish, S., Gopalaswamy, A. M., Knowles, S. C. L., and Sheldon, B. C. (2012). Site-occupancy modelling as a novel framework for assessing test sensitivity and estimating wildlife disease prevalence from imperfect diagnostic tests. Methods in Ecology and Evolution 3, 339–348.
Site-occupancy modelling as a novel framework for assessing test sensitivity and estimating wildlife disease prevalence from imperfect diagnostic tests.Crossref | GoogleScholarGoogle Scholar |

Lindenmayer, D. B., Gibbons, P., Bourke, M., Burgman, M., Dickman, C. R., Ferrier, S., Fitzsimons, J., Freudenberger, D., Garnett, S. T., Groves, C., Hobbs, R. J., Kingsford, R. T., Krebs, C., Legge, S., Lowe, A. J., McLean, R., Montambault, J., Possingham, H., Radford, J., Robinson, D., Smallbone, L., Thomas, D., Varcoe, T., Vardon, M., Wardle, G., Woinarski, J., and Zerger, A. (2012). Improving biodiversity monitoring. Austral Ecology 37, 285–294.
Improving biodiversity monitoring.Crossref | GoogleScholarGoogle Scholar |

Lips, K. R., Brem, F., Brenes, R., Reeve, J. D., Alford, R. A., Voyles, J., Carey, C., Livo, L., Pessier, A. P., and Collins, J. P. (2006). Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences, USA 103, 3165–3170.
Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksF2ktrs%3D&md5=cf8178fe0c20fce59c3fc9c4fba9a9a5CAS |

Lips, K. R., Diffendorfer, J., Mendelson, J. R., and Sears, M. W. (2008). Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biology 6, e72.
Riding the wave: reconciling the roles of disease and climate change in amphibian declines.Crossref | GoogleScholarGoogle Scholar | 18366257PubMed |

Littlejohn M (2003). ‘Frogs of Tasmania.’ 2nd edn. Fauna of Tasmania handbook No. 6. (University of Tasmania: Hobart.)

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
Estimating site occupancy rates when detection probabilities are less than one.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Sutton, N., Kawanishi, K., and Bailey, L. L. (2005). Improving inferences in population studies of rare species that are detected imperfectly. Ecology 86, 1101–1113.
Improving inferences in population studies of rare species that are detected imperfectly.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Royle, A. J., Pollock, K. H., Bailey, L. L., and Hines, J. E. (2006) ‘Occupancy Estimation And Modeling: Inferring Patterns And Dynamics of Species Occurrence.’ (Academic Press: Burlington, MA.)

MacKenzie, D. I., Bailey, L. L., Hines, J. E., and Nichols, J. D. (2011). An integrated model of habitat and species occurrence dynamics. Methods in Ecology and Evolution 2, 612–622.
An integrated model of habitat and species occurrence dynamics.Crossref | GoogleScholarGoogle Scholar |

McArdle, B. H. (1990). When are rare species not there? Oikos 57, 276–277.
When are rare species not there?Crossref | GoogleScholarGoogle Scholar |

McClintock, B. T., Nichols, J. D., Bailey, L. L., MacKenzie, D. I., Kendall, W. L., and Franklin, A. B. (2010). Seeking a second opinion: uncertainty in disease ecology. Ecology Letters 13, 659–674.
Seeking a second opinion: uncertainty in disease ecology.Crossref | GoogleScholarGoogle Scholar | 20426794PubMed |

McDonald, K. R., and Alford, R. A. (1999) A Review of Declining Frogs in Northern Queensland. In ‘Declines and disappearances of Australian frogs’. (Ed. A. Campbell.) pp. 14–22. (Environment Australia: Canberra.)

Miller, D. A. W., Talley, B. L., Lips, K. R., and Campbell Grant, E. H. (2012). Estimating patterns and drivers of infection prevalence and intensity when detection is imperfect and sampling error occurs. Methods in Ecology and Evolution 3, 850–859.
Estimating patterns and drivers of infection prevalence and intensity when detection is imperfect and sampling error occurs.Crossref | GoogleScholarGoogle Scholar |

Murray, K., Skerratt, L. F., Speare, R., and McCallum, H. (2009). Detecting the impact and dynamics of disease in species threatened by the amphibian chytrid fungus, Batrachochytrium dendrobatidis. Conservation Biology 23, 1242–1252.
Detecting the impact and dynamics of disease in species threatened by the amphibian chytrid fungus, Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar | 19774709PubMed |

Murray, K., Retallick, R., McDonald, K. R., Mendez, D., Aplin, K., Kirkpatrick, P., Berger, L., Hunter, D., Hines, H. B., Campbell, R., Pauza, M., Driessen, M., Speare, R., Richards, S. J., Mahony, M., Freeman, A., Phillott, A. D., Hero, J.-M., Driscoll, D., Puschendorf, R., and Skerratt, L. F. (2010). The distribution and host range of the pandemic disease chytridiomycosis in Australia spanning surveys from 1956 to 2007. Ecology 91, 1557–1558.

Murray, K. A., Retallick, R. W. R., Puschendorf, R., Skerratt, L. F., Rosauer, D., McCallum, H. I., Berger, L., Speare, R., and VanDerWal, J. (2011a). Assessing spatial patterns of disease risk to biodiversity: implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis. Journal of Applied Ecology 48, 163–173.
Assessing spatial patterns of disease risk to biodiversity: implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar |

Murray, K. A., Rosauer, D., Mccallum, H., and Skerratt, L. F. (2011b). Integrating species traits with extrinsic threats: closing the gap between predicting and preventing species declines. Proceedings of the Royal Society B 278, 1515–1523.
Integrating species traits with extrinsic threats: closing the gap between predicting and preventing species declines.Crossref | GoogleScholarGoogle Scholar | 20980304PubMed |

Nelson, G. L., and Graves, B. M. (2004). Anuran population monitoring: comparison of the North American amphibian monitoring program’s calling index with mark–recapture estimates for Rana clamitans. Journal of Herpetology 38, 355–359.
Anuran population monitoring: comparison of the North American amphibian monitoring program’s calling index with mark–recapture estimates for Rana clamitans.Crossref | GoogleScholarGoogle Scholar |

Obendorf D. Dalton A. 2006 A survey for the presence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) in Tasmania. Papers and Proceedings of the Royal Society of Tasmania 140 25 29

Pauza, M. D., Driessen, M. M., and Skerratt, L. F. (2010). Distribution and risk factors for spread of amphibian chytrid fungus Batrachochytrium dendrobatidis in the Tasmanian Wilderness World Heritage Area, Australia. Diseases of Aquatic Organisms 92, 193–199.
Distribution and risk factors for spread of amphibian chytrid fungus Batrachochytrium dendrobatidis in the Tasmanian Wilderness World Heritage Area, Australia.Crossref | GoogleScholarGoogle Scholar | 21268981PubMed |

Pellet, J., and Schmidt, B. R. (2005). Monitoring distributions using call surveys: estimating site occupancy, detection probabilities and inferring absence. Biological Conservation 123, 27–35.
Monitoring distributions using call surveys: estimating site occupancy, detection probabilities and inferring absence.Crossref | GoogleScholarGoogle Scholar |

Philips, A., Wilson, D., Voyles, J., Driessen, M., and Webb, M. (2010). Batrachochytrium dendrobatidis distribution, prevalence and implications for amphibian management in Tasmania. In ‘Chytrid research and management in Tasmania’. (Eds A. Philips, D. Wilson, J. Voyles, M. Cornish, K. Stewart, C. Stowe, K. Tsimbas, S. Blackhall and M. Driessen.) pp 16–28. Nature Conservation Report 10/02. Available at http://dpipwe.tas.gov.au/Documents/Chytrid-Research-and-Management-in-Tasmania---Part-1.pdf [Accessed 5 August 2015]

Phillott, A. D., Grogan, L. F., Cashins, S. D., Mcdonald, K. R., Berger, L., and Skerratt, L. F. (2013). Chytridiomycosis and seasonal mortality of tropical stream-associated frogs 15 years after introduction of Batrachochytrium dendrobatidis. Conservation Biology 27, 1058–1068.
Chytridiomycosis and seasonal mortality of tropical stream-associated frogs 15 years after introduction of Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar | 23678872PubMed |

Reeder, N. M. M., Pessier, A. P., and Vredenburg, V. T. (2012). A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease. PLoS One 7, e33567.
A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XksVGhu7Y%3D&md5=de87fb12cb14bc384dd655f2b505011aCAS |

Royle, J. A. (2004). Modeling abundance index data from anuran calling surveys. Conservation Biology 18, 1378–1385.
Modeling abundance index data from anuran calling surveys.Crossref | GoogleScholarGoogle Scholar |

Schloegel, L. M., Hero, J., Berger, L., Speare, R., McDonald, K., and Daszak, P. (2006). The decline of the sharp-snouted day frog (Taudactylus acutirostris): the first documented case of extinction by infection in a free-ranging wildlife species? Conservation Biology 3, 35–40.

Shirose, L. T., Bishop, C. A., Green, D. M., MacDonald, C. J., Brooks, R. J., and Helferty, N. J. (1997). Validation tests of an amphibian call count survey technique in Ontario, Canada. Herpetologica 53, 312–320.

Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillot, A. D., Hines, H. B., and Kenyon, N. (2007). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125–134.
Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs.Crossref | GoogleScholarGoogle Scholar |

Skerratt, L. F., McDonald, K. R., Hines, H. B., Berger, L., Mendez, D., Phillot, A. D., Cashins, S. D., Murray, K. A., and Speare, R. (2010). Application of the survey protocol for chytridiomycosis to Queensland, Australia. Diseases of Aquatic Organisms 92, 117–129.
Application of the survey protocol for chytridiomycosis to Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 21268974PubMed |

Skerratt, L. F., Mendez, D., McDonald, K. R., Garland, S., Livingstone, J., Berger, L., and Speare, R. (2011). Validation of diagnostic tests in wildlife: the case of chytridiomycosis in wild amphibians. Journal of Herpetology 45, 444–450.
Validation of diagnostic tests in wildlife: the case of chytridiomycosis in wild amphibians.Crossref | GoogleScholarGoogle Scholar |

Stevens, C. E., and Paszkowski, C. A. (2004). Using chorus-size ranks from call surveys to estimate reproductive activity of the wood frog (Rana sylvatica). Journal of Herpetology 38, 404–410.
Using chorus-size ranks from call surveys to estimate reproductive activity of the wood frog (Rana sylvatica).Crossref | GoogleScholarGoogle Scholar |

Thompson, K. G. (2007). Use of site occupancy models to estimate prevalence of Myxobolus cerebralis infection in trout. Journal of Aquatic Animal Health 19, 8–13.
Use of site occupancy models to estimate prevalence of Myxobolus cerebralis infection in trout.Crossref | GoogleScholarGoogle Scholar | 18236627PubMed |

Tompkins, D. M., Carver, S., Jones, M. E., Krkošek, M., and Skerratt, L. F. (2015). Emerging infectious diseases of wildlife: a critical perspective. Trends in Parasitology 31, 149–159.
Emerging infectious diseases of wildlife: a critical perspective.Crossref | GoogleScholarGoogle Scholar | 25709109PubMed |

Travis, J. (1994). Calibrating our expectations in studying amphibian populations. Herpetologica 50, 104–108.

Voyles, J., Philips, A., Wilson, D., Driessen, M., Webb, M., Berger, L., Harley, K., Woodhams, D. C., Murray, K., and Skeratt, L. (2010). Assessing pathogen virulence and host susceptibility: implications for risk assessment for chytridiomycosis management in Tasmanian frogs. In ‘Chytrid Research and Management in Tasmania’. (Eds A. Philips, D. Wilson, J. Voyles, M. Cornish, K. Stewart, C. Stowe, K. Tsimbas, S. Blackhall and M. Driessen.) pp. 29–39. Nature Conservation Report 10/02. Available at http://dpipwe.tas.gov.au/Documents/Chytrid-Research-and-Management-in-Tasmania---Part-1.pdf [Accessed 5 August 2015]

Voyles, J. L., Phillips, A., Driessen, M., Webb, M., Berger, L., Woodhams, D. C., Murray, K. A., and Skerratt, L. F. (2014). Initial assessment of host susceptibility and pathogen virulence for conservation and management of Tasmanian amphibians. Herpetological Conservation and Biology 9, 106–115.

Vredenburg, V. T., Knapp, R. A., Tunstall, T. S., and Briggs, C. J. (2010). Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the National Academy of Sciences, USA 107, 9689–9694.
Dynamics of an emerging disease drive large-scale amphibian population extinctions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXntFGqsb8%3D&md5=637c24d44660f79c2eb068e580e61690CAS |

Warnecke, L., Turner, J. M., Bollinger, T. K., Lorch, J. M., Misra, V., Cryan, P. M., Wibbelt, G., Blehert, D. S., and Willis, C. K. R. (2012). Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proceedings of the National Academy of Sciences, USA 109, 6999–7003.
Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntVWksbw%3D&md5=302455ff9dc642aa7209c16974d31c61CAS |

Webb, R., Mendez, D., Berger, L., and Speare, R. (2007). Additional disinfectants effective against the amphibian chytrid fungus Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 74, 13–16.
Additional disinfectants effective against the amphibian chytrid fungus Batrachochytrium dendrobatidis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s3hslKjsg%3D%3D&md5=36382e5c4bee9b932cb2be735dc9a127CAS | 17425259PubMed |