Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
REVIEW

A critical review of habitat use by feral cats and key directions for future research and management

Tim S. Doherty A C , Andrew J. Bengsen B and Robert A. Davis A
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.

B Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Locked Bag 6006, Orange, NSW 2800, Australia.

C Corresponding author. Email: t.doherty@ecu.edu.au

Wildlife Research 41(5) 435-446 https://doi.org/10.1071/WR14159
Submitted: 26 May 2014  Accepted: 18 October 2014   Published: 18 February 2015

Abstract

Feral cats (Felis catus) have a wide global distribution and cause significant damage to native fauna. Reducing their impacts requires an understanding of how they use habitat and which parts of the landscape should be the focus of management. We reviewed 27 experimental and observational studies conducted around the world over the last 35 years that aimed to examine habitat use by feral and unowned cats. Our aims were to: (1) summarise the current body of literature on habitat use by feral and unowned cats in the context of applicable ecological theory (i.e. habitat selection, foraging theory); (2) develop testable hypotheses to help fill important knowledge gaps in the current body of knowledge on this topic; and (3) build a conceptual framework that will guide the activities of researchers and managers in reducing feral cat impacts. We found that feral cats exploit a diverse range of habitats including arid deserts, shrublands and grasslands, fragmented agricultural landscapes, urban areas, glacial valleys, equatorial to sub-Antarctic islands and a range of forest and woodland types. Factors invoked to explain habitat use by cats included prey availability, predation/competition, shelter availability and human resource subsidies, but the strength of evidence used to support these assertions was low, with most studies being observational or correlative. We therefore provide a list of key directions that will assist conservation managers and researchers in better understanding and ameliorating the impact of feral cats at a scale appropriate for useful management and research. Future studies will benefit from employing an experimental approach and collecting data on the relative abundance and activity of prey and other predators. This might include landscape-scale experiments where the densities of predators, prey or competitors are manipulated and then the response in cat habitat use is measured. Effective management of feral cat populations could target high-use areas, such as linear features and structurally complex habitat. Since our review shows often-divergent outcomes in the use of the same habitat components and vegetation types worldwide, local knowledge and active monitoring of management actions is essential when deciding on control programs.

Additional keywords: Felis catus, habitat selection, home range, introduced predator, invasive predator, predator control.


References

Algar, D., Angus, G. J., Williams, M. R., and Mellican, A. E. (2007). Influence of bait type, weather and prey abundance on bait uptake by feral cats (Felis catus) on Peron Peninsula, Western Australia. Conservation Science Western Australia 6, 109–149.

Allen, B. L., Fleming, P. J. S., Hayward, M., Allen, L. R., Engeman, R. M., Ballard, G., and Leung, L. K. P. (2012). Top-predators as biodiversity regulators: contemporary issues affecting knowledge and management of dingoes in Australia. In ‘Biodiversity Enrichment in a Diverse World’. (Ed. G. A. Lameed.) pp. 85–132. (InTech.)

Bengsen, A., Butler, J., and Masters, P. (2011). Estimating and indexing feral cat population abundances using camera traps. Wildlife Research 38, 732–739.
Estimating and indexing feral cat population abundances using camera traps.Crossref | GoogleScholarGoogle Scholar |

Bengsen, A. J., Butler, J. A., and Masters, P. (2012). Applying home-range and landscape-use data to design effective feral-cat control programs. Wildlife Research 39, 258–265.
Applying home-range and landscape-use data to design effective feral-cat control programs.Crossref | GoogleScholarGoogle Scholar |

Blancher, P. (2013). Estimated number of birds killed by house cats (Felis catus) in Canada. Avian Conservation and Ecology 8, 3.
Estimated number of birds killed by house cats (Felis catus) in Canada.Crossref | GoogleScholarGoogle Scholar |

Börger, L., Dalziel, B. D., and Fryxell, J. M. (2008). Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecology Letters 11, 637–650.
Are there general mechanisms of animal home range behaviour? A review and prospects for future research.Crossref | GoogleScholarGoogle Scholar | 18400017PubMed |

Bradshaw, J. W. S. (1992). ‘The Behaviour of the Domestic Cat.’ (CAB International: Wallingford, UK.)

Brawata, R. L., and Neeman, T. (2011). Is water the key? Dingo management, intraguild interactions and predator distribution around water points in arid Australia. Wildlife Research 38, 426–436.
Is water the key? Dingo management, intraguild interactions and predator distribution around water points in arid Australia.Crossref | GoogleScholarGoogle Scholar |

Brook, L. A., Johnson, C. N., and Ritchie, E. G. (2012). Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. Journal of Applied Ecology 49, 1278–1286.
Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression.Crossref | GoogleScholarGoogle Scholar |

Capizzi, D., Bertolino, S., and Mortelliti, A. (2014). Rating the rat: global patterns and research priorities in impacts and management of rodent pests. Mammal Review 44, 148–162.
Rating the rat: global patterns and research priorities in impacts and management of rodent pests.Crossref | GoogleScholarGoogle Scholar |

Christensen, P. E., Ward, B. G., and Sims, C. (2013). Predicting bait uptake by feral cats, Felis catus, in semi‐arid environments. Ecological Management & Restoration 14, 47–53.
Predicting bait uptake by feral cats, Felis catus, in semi‐arid environments.Crossref | GoogleScholarGoogle Scholar |

Crooks, K. R. (2002). Relative sensitivities of mammalian carnivores to habitat fragmentation. Conservation Biology 16, 488–502.
Relative sensitivities of mammalian carnivores to habitat fragmentation.Crossref | GoogleScholarGoogle Scholar |

Crooks, K. R., and Soulé, M. E. (1999). Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566.
Mesopredator release and avifaunal extinctions in a fragmented system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltFKrsrw%3D&md5=3cc3b3ad61139900dd8a7d8dc1997796CAS |

Cruz, J., Glen, A. S., and Pech, R. P. (2013). Modelling landscape-level numerical responses of predators to prey: the case of cats and rabbits. PLoS ONE 8, e73544.
Modelling landscape-level numerical responses of predators to prey: the case of cats and rabbits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVOrtbzM&md5=82ab199cc46780362607966b0583f602CAS | 24039978PubMed |

Daniels, M. J., Beaumont, M. A., Johnson, P. J., Balharry, D., Macdonald, D. W., and Barratt, E. (2001). Ecology and genetics of wild-living cats in the north-east of Scotland and the implications for the conservation of the wildcat. Journal of Applied Ecology 38, 146–161.
Ecology and genetics of wild-living cats in the north-east of Scotland and the implications for the conservation of the wildcat.Crossref | GoogleScholarGoogle Scholar |

Dickman, C. R. (1996). ‘Overview of the Impacts of Feral Cats on Australian Native Fauna.’ (Australian Nature Conservation Agency: Canberra.)

Dickman, C. R., Denny, E., and Buckmaster, A. (2010). Identification of sites of high conservation priority impacted by feral cats. Report for the Australian Government Department of the Environment, Water, Heritage and the Arts. Australian Government, Canberra.

Doherty, T. S., Davis, R. A., van Etten, E. J. B., Algar, D., Collier, N., Dickman, C. R., Edwards, G., Masters, P., Palmer, R., and Robinson, S. (2015). A continental-scale analysis of feral cat diet in Australia. Journal of Biogeography , .
A continental-scale analysis of feral cat diet in Australia.Crossref | GoogleScholarGoogle Scholar |

Duffy, D. C., and Capece, P. (2012). Biology and impacts of Pacific Island invasive species. 7. The domestic cat (Felis catus). Pacific Science 66, 173–212.
Biology and impacts of Pacific Island invasive species. 7. The domestic cat (Felis catus).Crossref | GoogleScholarGoogle Scholar |

Ferreira, J. P., Leitão, I., Santos-Reis, M., and Revilla, E. (2011). Human-related factors regulate the spatial ecology of domestic cats in sensitive areas for conservation. PLoS ONE 6, e25970.
Human-related factors regulate the spatial ecology of domestic cats in sensitive areas for conservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVCku7rO&md5=2b901cd3b70085c19b5b405a17978bc0CAS | 22043298PubMed |

Fitzgerald, B. M., and Turner, D. C. (2000). Hunting behaviour of domestic cats and their impact on prey populations. In ‘The Domestic Cat: the Biology of its Behaviour’. (Eds D. C. Turner and P. Bateson.) pp. 151–175. (Cambridge University Press: Cambridge.)

Flaxman, S. M., and Lou, Y. (2009). Tracking prey or tracking the prey’s resource? Mechanisms of movement and optimal habitat selection by predators. Journal of Theoretical Biology 256, 187–200.
Tracking prey or tracking the prey’s resource? Mechanisms of movement and optimal habitat selection by predators.Crossref | GoogleScholarGoogle Scholar | 18952108PubMed |

Fleming, P. J. S., Allen, B. L., and Ballard, G.-A. (2012). Seven considerations about dingoes as biodiversity engineers: the socioecological niches of dogs in Australia. Australian Mammalogy 34, 119–131.
Seven considerations about dingoes as biodiversity engineers: the socioecological niches of dogs in Australia.Crossref | GoogleScholarGoogle Scholar |

Garnett, S. T., Franklin, D. C., Ehmke, G., VanDerWal, J. J., Hodgson, L., Pavey, C., Reside, A. E., Welbergen, J. A., Butchart, S., Perkins, G. C., and Williams, S. E. (2013). ‘Climate Change Adaptation Strategies for Australian Birds.’ (National Climate Change Adaptation Research Facility: Gold Coast.)

Gehring, T. M., and Swihart, R. K. (2003). Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. Biological Conservation 109, 283–295.
Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape.Crossref | GoogleScholarGoogle Scholar |

Genovesi, P., Besa, M., and Toso, S. (1995). Ecology of a feral cat Felis catus population in an agricultural area of northern Italy. Wildlife Biology 1, 233–237.

Glen, A. S., Dickman, C. R., Soulé, M. E., and Mackey, B. G. (2007). Evaluating the role of the dingo as a trophic regulator in Australian ecosystems. Austral Ecology 32, 492–501.
Evaluating the role of the dingo as a trophic regulator in Australian ecosystems.Crossref | GoogleScholarGoogle Scholar |

Goltz, D. M., Hess, S. C., Brinck, K. W., Danner, R. M., and Banko, P. C. (2008). Home range and movements of feral cats on Mauna Kea, Hawai’i. Pacific Conservation Biology 14, 177–184.

Graham, C. A., Maron, M., and McAlpine, C. A. (2012). Influence of landscape structure on invasive predators: feral cats and red foxes in the brigalow landscapes, Queensland, Australia. Wildlife Research 39, 661–676.
Influence of landscape structure on invasive predators: feral cats and red foxes in the brigalow landscapes, Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Hall, L. S., Krausman, P. R., and Morrison, M. L. (1997). The habitat concept and a plea for standard terminology. Wildlife Society Bulletin 25, 173–182.

Hall, L. S., Kasparian, M. A., Van Vuren, D., and Kelt, D. A. (2000). Spatial organization and habitat use of feral cats (Felis catus L.) in Mediterranean California. Mammalia 64, 19–28.
Spatial organization and habitat use of feral cats (Felis catus L.) in Mediterranean California.Crossref | GoogleScholarGoogle Scholar |

Harper, G. A. (2007). Habitat selection of feral cats (Felis catus) on a temperate, forested island. Austral Ecology 32, 305–314.
Habitat selection of feral cats (Felis catus) on a temperate, forested island.Crossref | GoogleScholarGoogle Scholar |

Heithaus, M. R. (2001). Habitat selection by predators and prey in communities with asymmetrical intraguild predation. Oikos 92, 542–554.
Habitat selection by predators and prey in communities with asymmetrical intraguild predation.Crossref | GoogleScholarGoogle Scholar |

Hess, S. C., Banko, P. C., and Hansen, H. (2009). An adaptive strategy for reducing feral cat predation on endangered Hawaiian birds. Pacific Conservation Biology 15, 56–64.

Holmala, K., and Kauhala, K. (2009). Habitat use of medium-sized carnivores in southeast Finland – key habitats for rabies spread? Annales Zoologici Fennici 46, 233–246.
Habitat use of medium-sized carnivores in southeast Finland – key habitats for rabies spread?Crossref | GoogleScholarGoogle Scholar |

Holt, R. D., and Polis, G. A. (1997). A theoretical framework for intraguild predation. American Naturalist 149, 745–764.
A theoretical framework for intraguild predation.Crossref | GoogleScholarGoogle Scholar |

Hone, J. (2007). ‘Wildlife Damage Control.’ (CSIRO Publishing: Melbourne.)

Horn, J. A., Mateus-Pinilla, N., Warner, R. E., and Heske, E. J. (2011). Home range, habitat use, and activity patterns of free-roaming domestic cats. The Journal of Wildlife Management 75, 1177–1185.
Home range, habitat use, and activity patterns of free-roaming domestic cats.Crossref | GoogleScholarGoogle Scholar |

Hutchings, S. D. (2000). Ecology of feral cats (Felis catus) at a refuse dump in coastal southern Victoria, Australia. Ph.D. Thesis, Deakin University, Melbourne.

IUCN SSC Invasive Species Specialist Group (2012). Database of Island Invasive Species Eradications. Island Conservation. Available at: http://eradicationsdb.fos.auckland.ac.nz/

Janssen, A., Sabelis, M. W., Magalhães, S., Montserrat, M., and Van der Hammen, T. (2007). Habitat structure affects intraguild predation. Ecology 88, 2713–2719.
Habitat structure affects intraguild predation.Crossref | GoogleScholarGoogle Scholar | 18051638PubMed |

Johnson, C. (2006). ‘Australia’s Mammal Extinctions: A 50 000 Year History.’ (Cambridge University Press: Melbourne.)

Johnson, D. H. (1980). The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71.
The comparison of usage and availability measurements for evaluating resource preference.Crossref | GoogleScholarGoogle Scholar |

Jones, H. P., Tershy, B. R., Zavaleta, E. S., Croll, D. A., Keitt, B. S., Finkelstein, M. E., and Howald, G. R. (2008). Severity of the effects of invasive rats on seabirds: a global review. Conservation Biology 22, 16–26.
Severity of the effects of invasive rats on seabirds: a global review.Crossref | GoogleScholarGoogle Scholar | 18254849PubMed |

Judge, S., Lippert, J. S., Misajon, K., Hu, D., and Hess, S. C. (2012). Videographic evidence of endangered species depredation by feral cat. Pacific Conservation Biology 18, 293–296.

Keitt, B. S., Wilcox, C., Tershy, B. R., Croll, D. A., and Donlan, C. J. (2002). The effect of feral cats on the population viability of black-vented shearwaters (Puffinus opisthomelas) on Natividad Island, Mexico. Animal Conservation 5, 217–223.
The effect of feral cats on the population viability of black-vented shearwaters (Puffinus opisthomelas) on Natividad Island, Mexico.Crossref | GoogleScholarGoogle Scholar |

King, C. M., and Moody, J. E. (1982). The biology of the stoat (Mustela erminea) in the National Parks of New Zealand. I. General introduction. New Zealand Journal of Zoology 9, 49–55.
The biology of the stoat (Mustela erminea) in the National Parks of New Zealand. I. General introduction.Crossref | GoogleScholarGoogle Scholar |

Kliskey, A. D., and Byrom, A. E. (2004). Development of a GIS-based methodology for quantifying predation risk in a spatial context. Transactions in GIS 8, 13–22.
Development of a GIS-based methodology for quantifying predation risk in a spatial context.Crossref | GoogleScholarGoogle Scholar |

Krauze-Gryz, D., Gryz, J. B., Goszczyński, J., Chylarecki, P., and Zmihorski, M. (2012). The good, the bad, and the ugly: space use and intraguild interactions among three opportunistic predators – cat (Felis catus), dog (Canis lupus familiaris), and red fox (Vulpes vulpes) – under human pressure. Canadian Journal of Zoology 90, 1402–1413.
The good, the bad, and the ugly: space use and intraguild interactions among three opportunistic predators – cat (Felis catus), dog (Canis lupus familiaris), and red fox (Vulpes vulpes) – under human pressure.Crossref | GoogleScholarGoogle Scholar |

Lazenby, B. T., and Dickman, C. R. (2013). Patterns of detection and capture are associated with cohabiting predators and prey. PLoS ONE 8, e59846.
Patterns of detection and capture are associated with cohabiting predators and prey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmtFWlsL4%3D&md5=0376ce4b91ad0a50f519d209ae028a79CAS | 23565172PubMed |

Letnic, M., Ritchie, E. G., and Dickman, C. R. (2012). Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biological Reviews of the Cambridge Philosophical Society 87, 390–413.
Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study.Crossref | GoogleScholarGoogle Scholar | 22051057PubMed |

Long, J. (2003). ‘Introduced Mammals of the World.’ (CSIRO Publishing: Melbourne.)

Loss, S. R., Will, T., and Marra, P. P. (2013). The impact of free-ranging domestic cats on wildlife of the United States. Nature Communications 4, .
The impact of free-ranging domestic cats on wildlife of the United States.Crossref | GoogleScholarGoogle Scholar | 23360987PubMed |

Lowe, S., Browne, M., Boudjelas, S., and De Poorter, M. (2000). ‘100 of the World’s Worst Invasive Alien Species. A Selection from the Global Invasive Species Specialist Group (ISSG), a Specialist Group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN).’ (Invasive Species Specialist Group: Auckland.)

Lozano, J., Virgós, E., Malo, A. F., Huertas, D. L., and Casanovas, J. G. (2003). Importance of scrub–pastureland mosaics for wild-living cats occurrence in a Mediterranean area: implications for the conservation of the wildcat (Felis silvestris). Biodiversity and Conservation 12, 921–935.
Importance of scrub–pastureland mosaics for wild-living cats occurrence in a Mediterranean area: implications for the conservation of the wildcat (Felis silvestris).Crossref | GoogleScholarGoogle Scholar |

Luna-Mendoza, L., Barredo-Barberena, J. M., Hernández-Montoya, J. C., Aguirre-Muñoz, A., Méndez-Sánchez, F. A., Ortiz-Alcaraz, A., and Félix-Lizárraga, M. (2011). Planning for the eradication of feral cats on Guadalupe Island, Mexico: home range, diet, and bait acceptance. In ‘Island Invasives: Eradication and Management’. (Eds C. R. Veitch, M. N. Clout, and D. R. Towns.) pp. 192–197. (IUCN: Gland.)

Mahon, P. S., Banks, P. B., and Dickman, C. R. (1998). Population indices for wild carnivores: a critical study in sand-dune habitat, south-western Queensland. Wildlife Research 25, 11–22.
Population indices for wild carnivores: a critical study in sand-dune habitat, south-western Queensland.Crossref | GoogleScholarGoogle Scholar |

McGregor, H., Legge, S., Jones, M., and Johnson, C. N. (2014). Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats. PLoS ONE 9, e109097.
Landscape management of fire and grazing regimes alters the fine-scale habitat utilisation by feral cats.Crossref | GoogleScholarGoogle Scholar | 25329902PubMed |

Medina, F. M., Bonnaud, E., Vidal, E., Tershy, B. R., Zavaleta, E. S., Josh Donlan, C., Keitt, B. S., Corre, M., Horwath, S. V., and Nogales, M. (2011). A global review of the impacts of invasive cats on island endangered vertebrates. Global Change Biology 17, 3503–3510.
A global review of the impacts of invasive cats on island endangered vertebrates.Crossref | GoogleScholarGoogle Scholar |

Medina, F. M., Bonnaud, E., Vidal, E., and Nogales, M. (2014). Underlying impacts of invasive cats on islands: not only a question of predation. Biodiversity and Conservation 23, 327–342.
Underlying impacts of invasive cats on islands: not only a question of predation.Crossref | GoogleScholarGoogle Scholar |

Medway, D. G. (2004). The land bird fauna of Stephens Island, New Zealand in the early 1890s, and the cause of its demise. Notornis 51, 201–211.

Mitchell, M. S., and Powell, R. A. (2004). A mechanistic home range model for optimal use of spatially distributed resources. Ecological Modelling 177, 209–232.
A mechanistic home range model for optimal use of spatially distributed resources.Crossref | GoogleScholarGoogle Scholar |

Molsher, R. (1999). The ecology of feral cats, Felis catus, in open forest in New South Wales: interactions with food resources and foxes. Ph.D. Thesis, University of Sydney.

Moseby, K. E., Stott, J., and Crisp, H. (2009). Movement patterns of feral predators in an arid environment – implications for control through poison baiting. Wildlife Research 36, 422–435.
Movement patterns of feral predators in an arid environment – implications for control through poison baiting.Crossref | GoogleScholarGoogle Scholar |

Moseby, K. E., Read, J. L., Paton, D. C., Copley, P., Hill, B. M., and Crisp, H. A. (2011). Predation determines the outcome of 10 reintroduction attempts in arid South Australia. Biological Conservation 144, 2863–2872.
Predation determines the outcome of 10 reintroduction attempts in arid South Australia.Crossref | GoogleScholarGoogle Scholar |

Mosnier, A., Boisjoly, D., Courtois, R., and Ouellet, J. P. (2008). Extensive predator space use can limit the efficacy of a control program. The Journal of Wildlife Management 72, 483–491.
Extensive predator space use can limit the efficacy of a control program.Crossref | GoogleScholarGoogle Scholar |

Nogales, M., Vidal, E., Medina, F. M., Bonnaud, E., Tershy, B. R., Campbell, K. J., and Zavaleta, E. S. (2013). Feral cats and biodiversity conservation: the urgent prioritization of island management. Bioscience 63, 804–810.
Feral cats and biodiversity conservation: the urgent prioritization of island management.Crossref | GoogleScholarGoogle Scholar |

Pastro, L. A. (2013). The effects of wildfire on small mammals and lizards in the Simpson Desert, central Australia. Ph.D. Thesis, University of Sydney.

Pickerell, G. A., O’Donnell, C. F., Wilson, D. J., and Seddon, P. J. (2014). How can we detect introduced mammalian predators in non-forest habitats? A comparison of techniques. New Zealand Journal of Ecology 38, 86–102.

Polis, G. A., and Holt, R. D. (1992). Intraguild predation: the dynamics of complex trophic interactions. Trends in Ecology & Evolution 7, 151–154.
Intraguild predation: the dynamics of complex trophic interactions.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itVOhsg%3D%3D&md5=9175158613b894aeb9e6e7fc7fba685eCAS |

Potts, J. M., Buckland, S. T., Thomas, L., and Savage, A. (2012). Estimating abundance of cryptic but trappable animals using trapping point transects: a case study for Key Largo woodrats. Methods in Ecology and Evolution 3, 695–703.
Estimating abundance of cryptic but trappable animals using trapping point transects: a case study for Key Largo woodrats.Crossref | GoogleScholarGoogle Scholar |

Prugh, L. R., Stoner, C. J., Epps, C. W., Bean, W. T., Ripple, W. J., Laliberte, A. S., and Brashares, J. S. (2009). The rise of the mesopredator. Bioscience 59, 779–791.
The rise of the mesopredator.Crossref | GoogleScholarGoogle Scholar |

Pyke, G. H. (1984). Optimal foraging theory: a critical review. Annual Review of Ecology and Systematics 15, 523–575.
Optimal foraging theory: a critical review.Crossref | GoogleScholarGoogle Scholar |

Rayner, M. J., Hauber, M. E., Imber, M. J., Stamp, R. K., and Clout, M. N. (2007). Spatial heterogeneity of mesopredator release within an oceanic island system. Proceedings of the National Academy of Sciences of the United States of America 104, 20 862–20 865.
Spatial heterogeneity of mesopredator release within an oceanic island system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkt1ektg%3D%3D&md5=306d541c49a5f6eb8f1c5935526874beCAS |

Read, J., and Bowen, Z. (2001). Population dynamics, diet and aspects of the biology of feral cats and foxes in arid South Australia. Wildlife Research 28, 195–203.
Population dynamics, diet and aspects of the biology of feral cats and foxes in arid South Australia.Crossref | GoogleScholarGoogle Scholar |

Read, J., and Eldridge, S. (2010). An optimised rapid detection technique for simultaneously monitoring activity of rabbits, cats, foxes and dingoes in the rangelands. The Rangeland Journal 32, 389–394.
An optimised rapid detection technique for simultaneously monitoring activity of rabbits, cats, foxes and dingoes in the rangelands.Crossref | GoogleScholarGoogle Scholar |

Recio, M. R., and Seddon, P. J. (2013). Understanding determinants of home range behaviour of feral cats as introduced apex predators in insular ecosystems: a spatial approach. Behavioral Ecology and Sociobiology 67, 1971–1981.
Understanding determinants of home range behaviour of feral cats as introduced apex predators in insular ecosystems: a spatial approach.Crossref | GoogleScholarGoogle Scholar |

Recio, M. R., Mathieu, R., Maloney, R., and Seddon, P. J. (2010). First results of feral cats (Felis catus) monitored with GPS collars in New Zealand. New Zealand Journal of Ecology 34, 288–296.

Recio, M. R., Mathieu, R., Virgós, E., and Seddon, P. J. (2014). Quantifying fine-scale resource selection by introduced feral cats to complement management decision-making in ecologically sensitive areas. Biological Invasions 16, 1915–1927.
Quantifying fine-scale resource selection by introduced feral cats to complement management decision-making in ecologically sensitive areas.Crossref | GoogleScholarGoogle Scholar |

Ripple, W. J., Estes, J. A., Beschta, R. L., Wilmers, C. C., Ritchie, E. G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M. P., Schmitz, O. J., Smith, D. W., Wallach, A. D., and Wirsing, A. J. (2014). Status and ecological effects of the world’s largest carnivores. Science 343, 1241484.
Status and ecological effects of the world’s largest carnivores.Crossref | GoogleScholarGoogle Scholar | 24408439PubMed |

Risbey, D. A., Calver, M. C., Short, J., Bradley, J. S., and Wright, I. W. (2000). The impact of cats and foxes on the small vertebrate fauna of Heirisson Prong, Western Australia. II. A field experiment. Wildlife Research 27, 223–235.
The impact of cats and foxes on the small vertebrate fauna of Heirisson Prong, Western Australia. II. A field experiment.Crossref | GoogleScholarGoogle Scholar |

Ritchie, E. G., and Johnson, C. N. (2009). Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters 12, 982–998.
Predator interactions, mesopredator release and biodiversity conservation.Crossref | GoogleScholarGoogle Scholar | 19614756PubMed |

Ritchie, E. G., Elmhagen, B., Glen, A. S., Letnic, M., Ludwig, G., and McDonald, R. A. (2012). Ecosystem restoration with teeth: what role for predators? Trends in Ecology & Evolution 27, 265–271.
Ecosystem restoration with teeth: what role for predators?Crossref | GoogleScholarGoogle Scholar |

Rosenheim, J. A. (2004). Top predators constrain the habitat selection games played by intermediate predators and their prey. Israel Journal of Zoology 50, 129–138.
Top predators constrain the habitat selection games played by intermediate predators and their prey.Crossref | GoogleScholarGoogle Scholar |

Ross, S., Munkhtsog, B., and Harris, S. (2012). Determinants of mesocarnivore range use: relative effects of prey and habitat properties on Pallas’s cat home-range size. Journal of Mammalogy 93, 1292–1300.
Determinants of mesocarnivore range use: relative effects of prey and habitat properties on Pallas’s cat home-range size.Crossref | GoogleScholarGoogle Scholar |

Salo, P., Korpimaki, E., Banks, P. B., Nordstrom, M., and Dickman, C. R. (2007). Alien predators are more dangerous than native predators to prey populations. Proceedings. Biological Sciences 274, 1237–1243.
Alien predators are more dangerous than native predators to prey populations.Crossref | GoogleScholarGoogle Scholar |

Salo, P., Ahola, M. P., and Korpimäki, E. (2010). Habitat-mediated impact of alien mink predation on common frog densities in the outer archipelago of the Baltic Sea. Oecologia 163, 405–413.
Habitat-mediated impact of alien mink predation on common frog densities in the outer archipelago of the Baltic Sea.Crossref | GoogleScholarGoogle Scholar | 20151155PubMed |

Sarmento, P., Cruz, J., Eira, C., and Fonseca, C. (2009). Spatial colonization by feral domestic cats Felis catus of former wildcat Felis silvestris silvestris home ranges. Acta Theriologica 54, 31–38.
Spatial colonization by feral domestic cats Felis catus of former wildcat Felis silvestris silvestris home ranges.Crossref | GoogleScholarGoogle Scholar |

Short, J., and Turner, B. (2005). Control of feral cats for nature conservation. IV. Population dynamics and morphological attributes of feral cats at Shark Bay, Western Australia. Wildlife Research 32, 489–501.
Control of feral cats for nature conservation. IV. Population dynamics and morphological attributes of feral cats at Shark Bay, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., and Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31, 79–92.
Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures.Crossref | GoogleScholarGoogle Scholar |

Thompson, C. M., and Gese, E. M. (2007). Food webs and intraguild predation: community interactions of a native mesocarnivore. Ecology 88, 334–346.
Food webs and intraguild predation: community interactions of a native mesocarnivore.Crossref | GoogleScholarGoogle Scholar | 17479752PubMed |

Wang, Y., and Fisher, D. O. (2013). Dingoes affect activity of feral cats, but do not exclude them from the habitat of an endangered macropod. Wildlife Research 39, 611–620.
Dingoes affect activity of feral cats, but do not exclude them from the habitat of an endangered macropod.Crossref | GoogleScholarGoogle Scholar |

Wilkerson, M. S., and Wilkerson, M. B. (2010). Köppen-Geiger climate classification Google Earth file. DePauw University, Greencastle. Available at: http://koeppen-geiger.vu-wien.ac.at/

Wilson, R. R., Blankenship, T. L., Hooten, M. B., and Shivik, J. A. (2010). Prey-mediated avoidance of an intraguild predator by its intraguild prey. Oecologia 164, 921–929.
Prey-mediated avoidance of an intraguild predator by its intraguild prey.Crossref | GoogleScholarGoogle Scholar | 20953798PubMed |

Woinarski, J. C. Z., Legge, S., Fitzsimons, J. A., Traill, B. J., Burbidge, A. A., Fisher, A., Firth, R. S. C., Gordon, I. J., Griffiths, A. D., Johnson, C. N., McKenzie, N. L., Palmer, C., Radford, I., Rankmore, B., Ritchie, E. G., Ward, S., and Ziembicki, M. (2011). The disappearing mammal fauna of northern Australia: context, cause, and response. Conservation Letters 4, 192–201.
The disappearing mammal fauna of northern Australia: context, cause, and response.Crossref | GoogleScholarGoogle Scholar |