Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

An eDNA approach to detect eastern hellbenders (Cryptobranchus a. alleganiensis) using samples of water

Zachary H. Olson A C , Jeffrey T. Briggler B and Rod N. Williams A
+ Author Affiliations
- Author Affiliations

A Department of Forestry & Natural Resources, Purdue University, West Lafayette, IN 47907, USA.

B Missouri Department of Conservation, PO Box 180, Jefferson City, MO 65102, USA.

C Corresponding author. Email: olson.z.h@gmail.com

Wildlife Research 39(7) 629-636 https://doi.org/10.1071/WR12114
Submitted: 26 June 2012  Accepted: 15 August 2012   Published: 17 September 2012

Abstract

Context: Environmental DNA, or eDNA, methods are a novel application of non-invasive genetic sampling in which DNA from organisms is detected via sampling of water or soil, typically for the purposes of determining the presence or absence of an organism. eDNA methods have the potential to revolutionise the study of rare or endangered taxa.

Aims: We evaluated the efficacy of eDNA sampling to detect populations of an amphibian of conservation concern, the eastern hellbender (Cryptobranchus a. alleganiensis), indirectly from their aquatic environments.

Methods: We developed species-specific primers, validated their specificity and sensitivity, and assessed the utility of our methods in silico and in laboratory trials. In the field, we collected water samples from three sites with known densities of hellbenders, and from one site where hellbenders do not occur. We filtered water samples, extracted DNA from filters, and assayed the extraction products for hellbender DNA by using polymerase chain reaction (PCR) and gel electrophoresis.

Key results: Our methods detected hellbenders at densities approaching the lowest of reported natural densities. The low-density site (0.16 hellbenders per 100 m2) yielded two positive amplifications, the medium-density site (0.38 hellbenders per 100 m2) yielded eight positive amplifications, and the high-density site (0.88 hellbenders per 100 m2) yielded 10 positive amplifications. The apparent relationship between density and detection was obfuscated when river discharge was considered. There was no amplification in any negative control.

Conclusion: eDNA methods may represent a cost-effective means by which to establish broad-scale patterns of occupancy for hellbenders.

Implications: eDNA can be considered a valuable tool for detecting many species that are otherwise difficult to study.

Additional keywords: density, detection, DNA-based, monitoring, non-invasive, occupancy, presence.


References

Beja-Pereira, A., Oliveira, R., Alves, P. C., Schwartz, M. K., and Luikart, G. (2009). Advancing ecological understandings through technological transformations in noninvasive genetics. Molecular Ecology Resources 9, 1279–1301.
Advancing ecological understandings through technological transformations in noninvasive genetics.Crossref | GoogleScholarGoogle Scholar |

Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin, C. L., Slocombe, R., Ragan, M. A., Hyati, A. D., McDonald, K. R., Hines, H. B., Lips, K. R., Marantelli, G., and Parkes, H. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and central America. Proceedings of the National Academy of Sciences, USA 95, 9031–9036.
Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and central America.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkvFaltbc%3D&md5=30d9048461aac47f0e17580903da64e8CAS |

Birky, C. W., Fuerst, P., and Maruyama, T. (1989). Organelle gene diversity under migration, mutation, and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121, 613–627.

Blaustein, A. R., Wake, D. B., and Sousa, W. P. (1994). Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conservation Biology 8, 60–71.
Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions.Crossref | GoogleScholarGoogle Scholar |

Browne, R. K., Li, H., Mcginnity, D., Okada, S., Zhenghuan, W., Bodinof, C. M., Irwin, K. J., McMillan, A., and Briggler, J. T. (2011). Survey techniques for giant salamanders and other aquatic Caudata. Amphibian & Reptile Conservation 5, 1–16.

Burgmeier, N. G., Sutton, T. M., and Williams, R. N. (2011a). Spatial ecology of the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) in Indiana. Herpetologica 67, 135–145.
Spatial ecology of the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) in Indiana.Crossref | GoogleScholarGoogle Scholar |

Burgmeier, N. G., Unger, S. D., Sutton, T. M., and Williams, R. N. (2011b). Population status of the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) in Indiana. Journal of Herpetology 45, 195–201.
Population status of the eastern hellbender (Cryptobranchus alleganiensis alleganiensis) in Indiana.Crossref | GoogleScholarGoogle Scholar |

Constable, J. L., Ashley, M. V., Goodall, J., and Pusey, A. E. (2001). Noninvasive paternity assignment in Gombe chimpanzees. Molecular Ecology 10, 1279–1300.
Noninvasive paternity assignment in Gombe chimpanzees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXktFKiurg%3D&md5=493ad44acdff1b10eaccfd9a0494b82fCAS |

Darling, J. A., and Mahon, A. R. (2011). From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research 111, 978–988.
From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kmt77E&md5=4485cc402e66f983258fc26aad35d9a3CAS |

Deagle, B. E., Eveson, J. P., and Jarman, S. N. (2006). Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces. Frontiers in Zoology 3, 11.
Quantification of damage in DNA recovered from highly degraded samples – a case study on DNA in faeces.Crossref | GoogleScholarGoogle Scholar |

Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., and Miaud, C. (2011). Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6, e23398.
Persistence of environmental DNA in freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFanur3E&md5=28d34eaa0575360dbe06fe3af5734c1dCAS |

Epps, C. W., Palsbøll, P. J., Weyhausen, J. D., Roderick, G. K., Ramey, R. R., and McCullough, D. R. (2005). Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecology Letters 8, 1029–1038.
Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep.Crossref | GoogleScholarGoogle Scholar |

Ficetola, G. F., Miaud, C., Pompanon, F., and Taberlet, P. (2008). Species detection using environmental DNA from water samples. Biology Letters 4, 423–425.
Species detection using environmental DNA from water samples.Crossref | GoogleScholarGoogle Scholar |

Goldberg, C. S., Pilliod, D. S., Arkle, R. S., and Waits, L. P. (2011). Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS ONE 6, e22746.
Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOju7rP&md5=d00bb8bd63f2d0b051a8ebc23fb6717cCAS |

Hausknecht, R., Gula, R., Pirga, B., and Kuehn, R. (2007). Urine – a source for noninvasive genetic monitoring in wildlife. Molecular Ecology Notes 7, 208–212.
Urine – a source for noninvasive genetic monitoring in wildlife.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvVKru7w%3D&md5=ace800a36c12fe663cb34272360a8775CAS |

Howard, A. (1994). A detachment-limited model of drainage basin evolution. Water Resources Research 30, 2261–2285.
A detachment-limited model of drainage basin evolution.Crossref | GoogleScholarGoogle Scholar |

Humphries, W. J., and Pauley, T. K. (2005). Life history of the hellbender, Cryptobranchus alleganiensis, in a West Virginia stream. American Midland Naturalist 154, 135–142.
Life history of the hellbender, Cryptobranchus alleganiensis, in a West Virginia stream.Crossref | GoogleScholarGoogle Scholar |

IUCN, Conservation International, and NatureServe (2008). ‘An Analysis of Amphibians on the 2008 IUCN Red List.’ Available at http://www.iucnredlist.org/amphibians [verified 30 May 2012].

Jerde, C. L., Mahon, A. R., Chadderton, W. L., and Lodge, D. M. (2011). ‘Sight-unseen’ detection of rare aquatic species using environmental DNA. Conservation Letters 4, 150–157.
‘Sight-unseen’ detection of rare aquatic species using environmental DNA.Crossref | GoogleScholarGoogle Scholar |

Kendall, K. C., Stetz, J. B., Roon, D. A., Waits, L. P., Boulanger, J. B., and Paetkau, D. (2008). Grizzly bear density in Glacier National Park, Montana. The Journal of Wildlife Management 72, 1693–1705.
Grizzly bear density in Glacier National Park, Montana.Crossref | GoogleScholarGoogle Scholar |

Kern, W. H. (1984). The hellbender, C. alleganiensis in Indiana. M.Sc. Thesis, Indiana State University, Terre Haute, IN.

Lips, K. R., Brem, F., Brenes, R., Reeve, J. D., Alford, R. A., Voyles, J., Carey, C., Livo, L., Pessier, A. P., and Collins, J. P. (2006). Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences, USA 103, 3165–3170.
Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksF2ktrs%3D&md5=9809505b3e446da5293928a6f6bc0350CAS |

Marucco, F., Pletscher, D. H., Boitani, L., Schwartz, M. K., Pilgrim, K. L., and Lebreton, J.-D. (2009). Wolf survival and population trend using non-invasive capture-recapture techniques in the western Alps. Journal of Applied Ecology 46, 1003–1010.
Wolf survival and population trend using non-invasive capture-recapture techniques in the western Alps.Crossref | GoogleScholarGoogle Scholar |

Minton, S. A., Jr (2001). ‘Amphibians and Reptiles of Indiana.’ (Indiana Academy of Science: Indianapolis, IN.)

Nickerson, M. A., and Briggler, J. T. (2007). Harvesting as a factor in population decline of a long-lived salamander; the Ozark hellbender, Cryptobranchus alleganiensis bishopi Grobman. Applied Herpetology 4, 207–216.
Harvesting as a factor in population decline of a long-lived salamander; the Ozark hellbender, Cryptobranchus alleganiensis bishopi Grobman.Crossref | GoogleScholarGoogle Scholar |

Nickerson, M. A., and Mays, C. E. (1973). A study of the Ozark hellbender Cryptobranchus alleganiensis bishopi. Ecology 54, 1164–1165.
A study of the Ozark hellbender Cryptobranchus alleganiensis bishopi.Crossref | GoogleScholarGoogle Scholar |

Olson, Z. H., Burgmeier, N. G., Zollner, P. A., and Williams, R. N. (2013). Survival estimates for adult eastern hellbenders and their utility for conservation. Journal of Herpetology 47, .

Phillips, C. A., and Humphries, W. J. (2005). Cryptobranchus alleganiensis Daudin, 1803. In ‘Amphibian Declines: the Conservation Status of United States Species’. (Ed. M. Lannoo.) pp. 648–651. (University of California Press: Los Angeles, CA.)

Pietramellara, G., Ascher, J., Borgogni, F., Ceccherini, M. T., Guerri, G., and Nannipieri, P. (2009). Extracellular DNA in soil and sediment: fate and ecological relevance. Biology and Fertility of Soils 45, 219–235.
Extracellular DNA in soil and sediment: fate and ecological relevance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFektLs%3D&md5=655ea452f316aa27132d538e1b6ae896CAS |

Putman, R. J. (1995). Ethical considerations and animal welfare in ecological field studies. Biodiversity and Conservation 4, 903–915.
Ethical considerations and animal welfare in ecological field studies.Crossref | GoogleScholarGoogle Scholar |

Rosen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. In ‘Bioinformatics Methods and Protocols: Methods in Molecular Biology’. (Eds S. Misener and S. A. Krawetz.) pp. 365–386. (Humana Press Inc.: Totowa, NJ.)

Rudnick, J. A., Katzner, T. E., Bragin, E. A., Rhodes, O. E., and DeWoody, J. A. (2005). Using naturally shed feathers for individual identification, genetic parentage analyses, and population monitoring in an endangered Eastern imperial eagle (Aquila heliaca) population from Kazakhstan. Molecular Ecology 14, 2959–2967.
Using naturally shed feathers for individual identification, genetic parentage analyses, and population monitoring in an endangered Eastern imperial eagle (Aquila heliaca) population from Kazakhstan.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVGltLnL&md5=2dd7919cba82f8a954411fd9743e6286CAS |

Sabatino, S. J., and Routman, E. J. (2009). Phylogeography and conservation genetics of the hellbender salamander (Cryptobranchus alleganiensis). Conservation Genetics 10, 1235–1246.
Phylogeography and conservation genetics of the hellbender salamander (Cryptobranchus alleganiensis).Crossref | GoogleScholarGoogle Scholar |

Sastre, N., Francino, O., Lampreave, G., Bologov, V. V., López-Martín, J. M., Sánchez, A., and Ramírez, O. (2009). Sex identification of wolf (Canis lupus) using non-invasive samples. Conservation Genetics 10, 555–558.
Sex identification of wolf (Canis lupus) using non-invasive samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFWns78%3D&md5=d177c4bf876d5cf7888041a7953af4d6CAS |

Sawaya, M. A., Stetz, J. B., Clevenger, A. P., Gibeau, M. L., and Kalinowski, S. T. (2012). Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling. PLoS ONE 7, e34777.
Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XntlensLo%3D&md5=3cd911edeaa1546819edf3b8a1ed5276CAS |

Smyser, T. J., Beasley, J. C., Olson, Z. H., and Rhodes, O. E. (2010). Use of rhodamine b to reveal patterns of interspecific competition and bait acceptance in raccoons. The Journal of Wildlife Management 74, 1405–1416.

Solberg, K. H., Bellemain, E., Drageset, O.-M., Taberlet, P., and Swenson, J. E. (2006). An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size. Biological Conservation 128, 158–168.
An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size.Crossref | GoogleScholarGoogle Scholar |

Taberlet, P., and Luikart, G. (1999). Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society. Linnean Society of London 68, 41–55.
Non-invasive genetic sampling and individual identification.Crossref | GoogleScholarGoogle Scholar |

Taberlet, P., Griffin, S., Goossens, B., Questiau, S., Manceau, V., Escaravage, N., Waits, L. P., and Bouvet, J. (1996). Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Research 24, 3189–3194.
Reliable genotyping of samples with very low DNA quantities using PCR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XlslyrtLs%3D&md5=cfd4125032a47e0f5b7ef3212a6e18bcCAS |

Taberlet, P., Prud’homme, S. M., Campione, E., Roy, J., Miquel, C., Shehzad, W., Gielly, L., Rioux, D., Choler, P., Clément, J.-C., Melodelima, C., Pompanon, F., and Coissac, E. (2012). Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Molecular Ecology 21, 1816–1820.
Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XptVGksLY%3D&md5=63874062783cd9474efdf0506b7378a3CAS |

Thomsen, P. F., Kielgast, J., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., Orlando, L., and Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental DNA. Molecular Ecology 21, 2565–2573.
Monitoring endangered freshwater biodiversity using environmental DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Wlu7vO&md5=f251cea4f43f1220c391ddd31ab53ef4CAS |

Unger, S. D., Fike, J. A., Sutton, T., Rhodes, O. E., and Williams, R. N. (2010). Isolation and development of 12 polymorphic tetranucleotide microsatellite markers for the eastern hellbender (Cryptobranchus alleganiensis alleganiensis). Conservation Genetics Resources 2, 89–91.
Isolation and development of 12 polymorphic tetranucleotide microsatellite markers for the eastern hellbender (Cryptobranchus alleganiensis alleganiensis).Crossref | GoogleScholarGoogle Scholar |

Valière, N., Fumagalli, L., Gielly, L., Miquel, C., Lequette, B., Poulle, M.-L., Weber, J.-M., Arlettaz, R., and Taberlet, P. (2003). Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years. Animal Conservation 6, 83–92.
Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years.Crossref | GoogleScholarGoogle Scholar |

Valsecchi, E., Glockner-Ferrari, D., Ferrari, M., and Amos, W. (1998). Molecular analysis of the efficiency of sloughed skin sampling in whale population genetics. Molecular Ecology 7, 1419–1422.
Molecular analysis of the efficiency of sloughed skin sampling in whale population genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmvFGitrg%3D&md5=df4c471af041d3090fc6be6be8fc58d1CAS |

Waits, L. P. (2004). Using noninvasive genetic sampling to detect and estimate abundance of rare wildlife species. In ‘Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters’. (Ed. W. L. Thompson.) pp. 211–228. (Island Press: Washington, DC.)

Waits, L. P., and Paetkau, D. (2005). Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. The Journal of Wildlife Management 69, 1419–1433.
Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection.Crossref | GoogleScholarGoogle Scholar |

Welsh, H. H., and Ollivier, L. M. (1998). Stream amphibians as indicators of ecosystem stress: a case study from California’s redwoods. Ecological Applications 8, 1118–1132.

Wheeler, B. A., Prosen, E., Mathis, A., and Wilkinson, R. F. (2003). Population declines of a long-lived salamander : a 20+-year study of hellbenders, Cryptobranchus alleganiensis. Biological Conservation 109, 151–156.
Population declines of a long-lived salamander : a 20+-year study of hellbenders, Cryptobranchus alleganiensis.Crossref | GoogleScholarGoogle Scholar |

Williams, R. D., Gates, J. E., Hocutt, C. H., and Taylor, G. J. (1981). The hellbender: a nongame species in need of management. Wildlife Society Bulletin 9, 94–100.