The value of nest boxes in the research and management of Australian hollow-using arboreal marsupials
Georgia L. Beyer A and Ross L. Goldingay A BA School of Environmental Science and Management, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia.
B Corresponding author. Email: ross.goldingay@scu.edu.au
Wildlife Research 33(3) 161-174 https://doi.org/10.1071/WR04109
Submitted: 29 October 2004 Accepted: 29 March 2006 Published: 31 May 2006
Abstract
Nest boxes have been recognised as research and management tools for arboreal marsupials in Australia for over 20 years. We review the published literature with the aim of describing the scope of studies conducted in Australia thus far and providing guidance to future research. We recognise three types of application in research: (1) detection of species, (2) study of a species’ ecology, and (3) investigation of box designs preferred by different species. Several species of arboreal marsupial may be detected more readily in nest boxes than by conventional survey techniques, allowing description of key aspects of their ecology; e.g. feathertail glider (Acrobates pygmaeus), eastern pygmy possum (Cercartetus nanus) and brush-tailed phascogale (Phascogale tapoatafa). Identifying the most favoured nest-box design for any species has implications for detection and management uses of nest boxes. More research is needed but preliminary findings suggest that species prefer narrow entrance holes, while height of the nest box above 3 m may be inconsequential. We recognise three types of management application: (1) species introduction, (2) support of populations of endangered species, and (3) strategic placement such as to enhance habitat connectivity. Currently there have been few attempts to use nest boxes to manage arboreal marsupials but further research is needed to realise their potential as a management tool.
Acknowledgments
We thank Sue Carthew, Geoff Smith, David Lindenmayer, Camilla Myers and an anonymous referee for comments on an earlier draft of this paper. We thank Alan Franks (Hollow Log Homes) for sharing his nest-box designs with us. Brisbane City Council is thanked for the support of our research in Brisbane from which many of the ideas expressed in this paper were developed.
Ballardie, R. T. , and Whelan, R. J. (1986). Masting, seed dispersal and seed predation in the cycad, Macrozamia communis. Oecologia 70, 100–105.
| Crossref | GoogleScholarGoogle Scholar |
Bladon, R. V. , Dickman, C. R. , and Hume, I. D. (2002). Effects of habitat fragmentation on the demography, movements and social organisation of the eastern pygmy-possum (Cercartetus nanus) in northern New South Wales. Wildlife Research 29, 105–116.
| Crossref | GoogleScholarGoogle Scholar |
Cameron, M. (2006). Nesting habitat of the glossy black-cockatoo in central New South Wales. Biological Conservation 127, 402–410.
| Crossref | GoogleScholarGoogle Scholar |
Fanning, F. D. (1980). Nests of the feathertail glider, Acrobates pygmaeus (Burramyidae: Marsupialia), from Sydney, New South Wales. Australian Mammalogy 3, 55–56.
Gibbons, P. , Lindenmayer, D. B. , Barry, S. C. , and Tanton, M. T. (2000). Hollow formation in eucalypts from temperate forests in southeastern Australia. Pacific Conservation Biology 6, 218–228.
Goldingay, R. L. (1990). The foraging behaviour of a nectar feeding marsupial, Petaurus australis. Oecologia 85, 191–199.
| Crossref | GoogleScholarGoogle Scholar |
Goldingay, R. L. , and Kavanagh, R. P. (1993). Home-range estimates and habitat of the yellow-bellied glider (Petaurus australis) at Waratah Creek, New South Wales. Wildlife Research 20, 387–404.
| Crossref | GoogleScholarGoogle Scholar |
Goldingay, R. L. , Carthew, S. M. , and Whelan, R. J. (1991). The importance of pollination by non-flying mammals. Oikos 61, 79–87.
Harley, D. K. P. , and Spring, D. A. (2003). Reply to the comment by Lindenmayer et al. on “Economics of a nest-box program for the conservation of an endangered species: a re-appraisal”. Canadian Journal of Forest Research 33, 752–753.
| Crossref | GoogleScholarGoogle Scholar |
Mand, R. , Tilgar, V. , Lohmus, A. , and Leivits, A. (2005). Providing nest boxes for hole-nesting birds – does habitat matter? Biodiversity and Conservation 14, 1823–1840.
| Crossref | GoogleScholarGoogle Scholar |
McComb, W. C. , and Noble, R. E. (1981). Microclimates of nest boxes and natural cavities in bottomland hardwoods. Journal of Wildlife Management 45, 284–289.
Menkhorst, P. W. (1984b). Use of nest boxes by forest vertebrates in Gippsland: acceptance, preference and demand. Australian Wildlife Research 11, 255–264.
| Crossref | GoogleScholarGoogle Scholar |
Sadler, L. M. , and Ward, S. J. (1999). Coalitions in male sugar gliders: are they natural? Journal of Zoology 248, 91–96.
| Crossref | GoogleScholarGoogle Scholar |
Wardell-Johnson, G. (1986). Use of nest boxes by mardos, Antechinus flavipes leucogaster, in regenerating karri forest in south western Australia. Australian Wildlife Research 13, 407–417.
| Crossref | GoogleScholarGoogle Scholar |
Wood, M. S. , and Wallis, R. L. (1998). Potential competition for nest boxes between feral honeybees and sugar gliders at Tower Hill State Game Reserve. Victorian Naturalist 115, 78–80.