Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Body condition assessment and prediction of fasting endurance in wild rabbits (Oryctolagus cuniculus)

M. Boos A B , C. Thouzeau A , G. Delacour B , M. Artois C , S. Marchandeau D , P. Jean-Claude C and J.-P. Robin A E
+ Author Affiliations
- Author Affiliations

A Centre d’Ecologie et Physiologie Energétiques, UPR 9010, Centre National de la Recherche Scientifique, associé à l’Université Louis Pasteur, affilié à l’INSERM, 23 rue Becquerel, 67087 Strasbourg Cedex 2, France.

B Office National de la Chasse et de la Faune Sauvage, Direction des Etudes et de la Recherche, BP 15, Gerstheim, 67154 Erstein Cedex, France.

C Ecole Nationale Vétérinaire de Lyon, 69280 Marcy l’Etoile, France.

D Office National de la Chasse et de la Faune Sauvage, Direction des Etudes et de la Recherche, 53 rue Russeil, 44000 Nantes, France.

E Corresponding author. Email: jean-patrice.robin@c-strasbourg.fr

Wildlife Research 32(1) 75-83 https://doi.org/10.1071/WR03112
Submitted: 2 December 2003  Accepted: 16 August 2004   Published: 25 February 2005

Abstract

In many species, reproductive success, resistance to food shortage and immune response to parasitism depend on body nutrient reserves. Thus, determining body fuels is important for studying the impact of the environment on animal fitness. As an alternative to the usual biochemical methods, we have defined models for estimating body composition in rabbits (Oryctolagus cuniculus). The accuracy of the indices obtained on a source group was tested on an independent group. The models were applicable regardless of age, sex or season. The intact body mass already accounted for 90% of the protein variability. The most accurate equation combining dry body mass and interscapular fat mass explained 99% of the protein variations. Intact body mass and the kidney fat index were poor estimators of lipid stores (r2 = 0.45) but 90% of the variation was explained by an equation combining the interscapular fat mass and the hind leg length. None of the predictive equations significantly over- or underestimated body reserves. The usefulness of the models was assessed by estimating fasting endurance during winter. Individual estimates, ranging from two to eight days, did not differ by more than 0.5 day from the fasting endurance obtained from actual mobilisable body nutrients. In such lean species (adiposity 2–4%), proteins may account for up to 40% of the available energy reserves and survival is likely to be linked to the continuous availability of food resources. These results stress the need to determine proteins and not only lipids to have a pertinent tool for the management of wild animal populations, particularly in lean species.


Acknowledgments

We are grateful to the agents of the Office National de la Chasse et de la Faune Sauvage (ONCFS) based in Alsace, who helped in collecting the animals. The study was supported by grants from ONCFS and the SAGIR network (ONCFS/French Agriculture Ministry joint venture) centralisation laboratory at the former CNEVA Nancy, currently AFSSA Nancy (Laboratoire d’études et de Recherche sur la Rage et la Pathologie des Animaux Sauvages). We thank A. Pape, who corrected the English.


References

Angerbjörn, A. (1986). Reproduction of mountain hares (Lepus timidus) in relation to density and physical condition. Journal of Zoology 208, 559–568.
Boos M. (2000). Modifications des réserves énergétiques corporelles chez le canard colvert (Anas platyrhynchos) et la bécasse des bois (Scolopax rusticola) au cours de leur hivernage: aspect fonctionnel lié à la biologie de ces espèces et aux conditions du milieu. Ph.D. Thesis, Strasbourg.

Boos, M. , Zorn, T. , Koch, A. , Le Maho, Y. , and Robin, J.-P. (2000). Determining body fuels of wintering mallards. Comptes Rendus de l’Académie des Sciences (Paris), Life Sciences 323, 183–193.
Cherel Y., and Groscolas R. (1999). Relationships between nutrient storage and nutrient utilisation in long-term fasting birds and mammals. In ‘Proceedings of the 22nd International Ornithological Congress, Durban, Johannesburg’. (Eds N. J. Adams and R. H. Slotow.) pp. 17–34. (BirdLife South Africa.)

Child, G. I. , and Marshall, S. C. (1970). A method of estimating carcass fat and fat-free weights in migrant birds from water content of specimens. Condor 72, 116–119.
Gessaman J. A. (1999). Evaluation of some nonlethal methods of estimating avian body fat and lean mass. In ‘Proceedings of the 22nd International Ornithological Congress, Durban, Johannesburg’. (Eds N. J. Adams and R. H. Slotow.) pp. 2–16. (BirdLife South Africa.)

Hayssen, V. , and Lacy, R. C. (1985). Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comparative Biochemistry and Physiology A – Molecular and Integrative Physiology 81, 741–754.
Crossref | GoogleScholarGoogle Scholar | Huot J. (1988). Review of methods for evaluating the physical condition of wild ungulates in northern environments. Centre d’études nordiques, Université Laval, Québec. Nordicana n° 50.

Huot, J. , Poulle, M.-L. , and Crête, M. (1995). Evaluation of several indices for assessment of coyote (Canis latrans) body composition. Canadian Journal of Zoology 73, 1620–1624.
Kirkpatrick R. L. (1980). Physiological indices in wildlife management. In ‘WiIdlife Management Technical Manual’. pp. 99–112.

Le Maho Y. (1989). Utilization of protein vs. lipid reserves in spontaneous fasting and hibernation. In ‘Living in the Cold’. (Eds A. Malan and B. Canguilhem.) pp. 147–152. (Libbey Eurotext Ltd.)

Pehrson, A. , and Lindlöf, B. (1984). Impact of winter nutrition on reproduction in captive mountain hares (Lepus timidus). Journal of Zoology 204, 201–209.
Robin J.-P. (1989). Modifications métaboliques et comportementales au cours du jeûne prolongé. Réalimentation après un jeûne prolongé. Ph.D. Thesis, Strasbourg.

Rogers, P. M. (1980). Reliability of epiphysial fusion as an indicator of age in rabbits. Mammalia 46, 267–269.
Scherrer B. (1984). ‘Biostatistiques.’ (Gaëtan Morin: Boucherville.)

Schmidt-Nielsen K. (1990). ‘Animal Physiology, Adaptation and Environment.’ 4th Edn. (Cambridge University Press: Cambridge.)

Soveri, T. , and Aarnio, M. (1983). Measuring the body condition of hares during the winter. Finnish Game Research 41, 21–28.
Thouzeau C. (1998). Métabolisme énergétique lors d’un jeûne au froid chez la chouette effraie (Tyto alba). Ph.D. Thesis, Lyon I.

Virgl, J. A. , and Messier, F. (1992). Seasonal variation in body composition and morphology of adult muskrats in central Saskatchewan, Canada. Journal of Zoology 228, 461–477.


Virgl, J. A. , and Messier, F. (1993). Evaluation of body size and body condition indices in muskrats. Journal of Wildlife Management 57, 854–860.


Warren, R. J. , and Kirkpatrick, R. L. (1978). Indices of nutritional status in cottontail rabbits fed controlled diets. Journal of Wildlife Management 42, 154–158.


Whittaker, M. E. , and Thomas, V. G. (1983). Seasonal levels of fat and protein reserves of snowshoe hares in Ontario. Canadian Journal of Zoology 61, 1339–1345.