Supplementary Material

Short-term impacts of operational fuel treatments on modelled fire behaviour and effects in seasonally dry forests of British Columbia, Canada

Kea H. Rutherford^{A,B,*}, Bianca N. I. Eskelson^A, Lori D. Daniels^B, Valerie LeMay^A, Gregory A. Greene^B and Robert W. Gray^C

^ADepartment of Forest Resources Management, University of British Columbia,
2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
^BDepartment of Forest and Conservation Sciences, University of British Columbia,
2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
^CR. W. Gray Consulting Ltd., 6311 Silverthorne Road, Chilliwack, BC V2R 2N2, Canada

*Correspondence to: Email: krutherford@berkeley.edu

Supplementary material A

Table S1. Methodologies used by the Fire and Fuels Extension to the Forest Vegetation Simulator.

Model metric	Citations
Canopy base height and canopy bulk density	Scott and Reinhardt (2001)
Surface fire behavior (rate of spread, flame length, fireline intensity)	Rothermel (1972), Albini (1976)
Crown fire initiation and propagation criteria	van Wagner (1977, 1993)
Probability of torching	Rebain et al. (2010)
Crowning index	Scott and Reinhardt (2001), linking Rothermel (1991) and van Wagner (1977)
Tree mortality	Reinhardt et al. (1997)

Supplementary material B

For each response variable (probability of torching (P-Torch), crowning index, and tree mortality), we first selected the best random-effects structure (Tables S1, S3, and S5). Proceeding with the selected random-effects structure, we then selected the best fixed-effects structure (Tables S2, S4, and S6).

P-Torch

Table S1. Akaike Information Criterion (AIC) for P-Torch models with different random-effects structures. The selected model is highlighted in bold font. REML, restricted likelihood.

Fixed effects	Random effect	Method	AIC
none	none	REML	432.40
none	forest & treatment unit within forest	REML	436.20
none	forest	REML	434.20
none	treatment unit	REML	434.40

Table S2. Akaike Information Criterion (AIC) for P-Torch models with different fixed effects structures. The final model is highlighted in bold font. TRT, fuel treatment type (1-5); HT, average tree height; ML, full likelihood.

Fixed effects	Random effect	Method	AIC
TRT	none	ML	442.56
TRT, HT	none	ML	435.53
TRT, HT, TRT*HT	none	ML	439.72

Crowning index

Table S3. Akaike Information Criterion (AIC) for crowning index models with different random effects structures. The selected model is highlighted in bold. REML, restricted likelihood.

Fixed effects	Random effect	Method	AIC
none	none	REML	333.05
none	forest & treatment unit within forest	REML	321.51
none	forest	REML	333.87
none	treatment unit	REML	319.51

Table S4. Akaike Information Criterion (AIC) for crowning index models with different fixed effects structures. The final model is highlighted in bold. TRT, fuel treatment type (1-5); DEN, density of live trees; ML, full likelihood.

Fixed effects	Random effect	Method	AIC
TRT	treatment unit	ML	320.19
TRT, DEN	treatment unit	ML	305.19
TRT, DEN, TRT*DEN	treatment unit	ML	305.38

Tree mortality

Table S5. Akaike Information Criterion (AIC) for tree mortality models with different random effects structures. The selected model is highlighted in bold. REML, restricted likelihood.

Fixed effects	Random effect	Method	AIC
none	none	REML	384.51
none	forest & treatment unit within forest	REML	386.31
none	forest	REML	386.44
none	treatment unit	REML	384.31

Table S6. Akaike Information Criterion (AIC) for tree mortality models with different fixed effects structures. The final model is highlighted in bold. TRT, fuel treatment type (1-5); RD, Curtis Relative Density; ML, full likelihood.

Fixed effects	Random effect	Method	AIC
TRT	none	ML	384.93
TRT, RD	none	ML	379.13
TRT, RD, TRT*RD	none	ML	382.82

Supplementary material C

For models where the random treatment unit and forest effects were not significant, goodness-offit was assessed with Pseudo R² and root mean square error (RMSE, which is reported in the unit of the response variable; Rawlings et al. 1998). For models where the random treatment unit and/or forest effect was significant, goodness-of-fit was assessed with RMSE, marginal R² (the proportion of variance explained by the fixed component of the model), and conditional R² (the proportion of variance explained by the fixed and random components of the model; Nakagawa and Schielzeth 2013). The marginal and conditional R² were computed using the piecewiseSEM package in R (Lefcheck 2016).

For probability of torching (P-Torch; in %), the final meta-model had fuel treatment type and average tree height as fixed effects. The RMSE was 32.5% and the Pseudo R² was 0.25 for the fitted model. The final meta-model for crowning index (in km h⁻¹) had a random treatment unit effect as well as fuel treatment type and density of live trees as fixed effects. The RMSE was 6.3 km h⁻¹, the marginal R² was 0.57, and the conditional R² was 0.64 for the fitted model. The final meta-model for tree mortality (in %) had fuel treatment type and Curtis RD as fixed effects. The RMSE was 18.7% and the Pseudo R² was 0.38 for the fitted model.

References

Albini FA (1976) Computer-based models of wildland fire behavior: a user's manual. USDA Forest Service, Intermountain Forest and Range Experiment Station. (Ogden, UT)

Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. *Methods in Ecology and Evolution* **7**, 573-579.

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R^2 from generalized linear mixed-effects models. *Methods in Ecology and Evolution* 4(2), 133-142.

Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression analysis: A research tool (2nd ed) pp. 444. (Springer: New York, NY)

Rebain SA, Reinhardt ED, Crookston NL, Beukema SJ, Kurz WA, Greenough JA, Robinson DCE, Lutes DC (2010) The Fire and Fuels Extension to the Forest Vegetation Simulator: Updated model documentation. USDA Forest Service, Forest Management Services Center Internal Report. (Fort Collins, CO)

Reinhardt ED, Keane RE, Brown JK (1997) First Order Fire Effects Model: FOFEM 4.0, user's guide. USDA Forest Service, Intermountain Research Station General Technical Report INT-GTR-344. (Ogden, UT)

Rothermel RC (1972) A mathematical model for predicting fire spread in wild land fuels. USDA Forest Service, Intermountain Forest and Range Experiment Station Research Paper INT-115. (Ogden, UT)

Rothermel RC (1991) Predicting fire behavior and size of crown fires in northern Rocky Mountains. USDA Forest Service, Intermountain Research Station Research Paper INT-438. (Ogden, UT)

Scott JH, Reinhardt ED (2001) Assessing crown fire potential by linking models of surface and crown fire behavior. USDA Forest Service, Rocky Mountain Research Station Research Paper RMRS-RP-29. (Fort Collins, CO)

van Wagner CE (1977) Conditions for the start and spread of crown fire. *Canadian Journal of Forest Research* 7, 23-34.

van Wagner CE (1993) Prediction of crown fire behavior in two stands of jack pine. *Canadian Journal of Forest Research* **23**, 442-449.