Supplementary Material

Long-term post-fire succession of reptiles in an urban remnant in south-western Australia

Robert A. Davis^{A,*} and Michael D. Craig^B

^ASchool of Science, Edith Cowan University, Joondalup, WA 6027, Australia

^BSchool of Biological Sciences, University of Western Australia, Nedlands, WA 6009, Australia

*Correspondence to: Email: robert.davis@ecu.edu.au

Supplementary materials

Table S1. Dates of each of the 13 reptile sampling sessions

Year	Datas		
rear	Dates		
2009	19 th to 29 th November		
2010	1 st to 11 th November		
2011	16 th to 26 th November		
2011	10 to 20 November		
2012	14 th to 24 th November		
2013	12 th to 22 nd November		
2015	23 rd November to 3 rd December		
2015			
2016	21 st November to 1 st December		
2017	5 th to 15 th December		
2018	4 th to 14 th December		
2020	8 th to 18 th December		
2020	8 to 18 December		
2021	7 th to 17 th December		
2022	10 th to 20 th December		
2023	11 th to 21 st December		
2025			

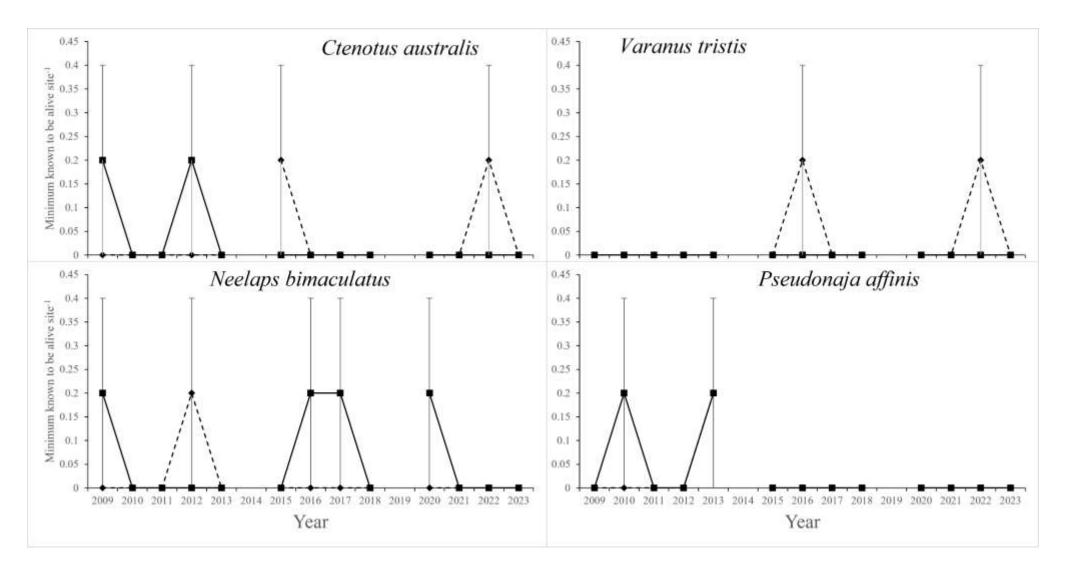


Fig. S1. Mean relative abundance (\pm s.e.) in unburnt and burnt sites for the first 15 years post-fire for the four species that were not abundant enough to analyse for fire responses.

Table S2. The 15 species that showed no significant response to fire with the numbers of captures (n) as well as the probabilities of their treatment and treatment by time

interactions from the mixed model.

Species	n	Treatment (P of t_8)	Treatment x Time (P of t_{118})
Aprasia repens	11	0.400	0.374
Lialis burtonis	33	0.350	0.326
Christinus marmoratus	49	0.556	0.536
Ctenotus australis	4		
Ctenotus fallens	489	0.889	0.881
Cyclodomorphus celatus	30	0.957	0.952
Lerista elegans	167	0.231	0.196
Menetia greyii	71	0.613	0.597
Morethia obscura	108	0.412	0.384
Tiliqua rugosa	17	0.357	0.331
Pogona minor	108	0.976	0.978
Varanus tristis	2		
Anilios australis	15	0.118	0.084

Neelaps bimaculatus	5	
Pseudonaja affinis	3	