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Appendix A Clustering algorithm: K-means943

Pattern recognition deals with the construction of mechanisms capable of extracting relevant944

information and key patterns from sample observations. That is, the identification of regu-945

larities in the data, to impose a set of identity (classification, clustering, association, etc.)946

or dependency (regression) relationships. Cluster analysis, or simply clustering, is the task947

of grouping a set of observations in such a way that observations in the same group (cluster)948

are more similar (in a certain sense) to each other than those in other groups. The aim of949

these techniques is to form groups in order to recognise patterns or structures within the950

general population. Clustering itself is not a specific algorithm, but the general task to be951

solved. This appendix presents the K-means algorithm, the clustering method used in the952

data analysis and which was first proposed by Hartigan and Wong (1979).953

The K-means algorithm finds k P Zě1 clusters (fixed value), around a given set of centres954

tm
p1q
1 , ...,m

p1q
k u which define the initial clusters S

p1q
1 , ..., S

p1q
k , by iterating the following steps:955

1. Assign each observation X p to a single cluster, being the one with the closest mean:956

S
piq
` “

!

X p : ‖ X p ´m
piq
` ‖2

2 ď ‖ X p ´m
piq
h ‖2

2, h “ 1, ..., k
)

, ` “ 1, ..., k.

It is imposed that X p is assigned to exactly one S
piq
` , ` “ 1, ..., k, although it could be957

in two or more.958

2. For each cluster, calculate the means that will be used as centres of the new clusters:959

m
pi`1q
` “

1

|S
piq
` |

ÿ

XhPS
piq

`

X h, ` “ 1, ..., k.

3. Update iÐ i` 1.960

The algorithm converges when the assignments no longer change. However, the iterative961

refinement process ends when the maximum number of iterations allowed is reached.962

43



Appendix B Area-level zero-inflated Gamma mixed model963

This appendix describes the area-level zero-inflated Gamma (aZIG) mixed model used in964

the data analysis. All mathematical steps are detailed, justifying the soundness of what965

is presented. The formulation of the model is given in an orderly fashion, followed by the966

description of the Laplace approximation algorithm. Subsequently, the expression of the967

plug-in predictor of the target quantities is provided. Given that the focus of our research968

is of an applied nature and this predictor achieves good results when applied to real data,969

more complex predictors with more sophisticated theoretical properties, such as asymptotic970

unbiasedness, were not investigated. Finally, boostrap inference techniques are included to971

calculate confidence intervals (CI) of the model parameters and estimate the mean squared972

error (MSE) of the predictors.973

Model974

The model is proposed below in a general form. However, it is particularised for application to

aggregated fire data in weeks and provinces where appropriate. Let us consider a continuous

random variable yijk taking values on r0,8q, where i P I “ t1, . . . , Iu, j P J “ t1, . . . , Ju and

k P K “ t1, . . . , Ku. Let D “ IJK be the total possible y-values. For instance, yijk could be

the total burned area (in Ha) of a territory during a time period, or its value averaged over

the number of reported forest fires. The indexes i, j and k might represent the year, week

and province, so D would be the sum of domains defined by the crosses of these categories.

As explained before, the target variable is posed for K “ 41 Spanish provinces, during

J “ 18 weeks (between the 27 and 44th weeks of the year) and I “ 9 years. Therefore, we

deal with D “ IJK “ 6642 domains and work at area-level to model and predict yijk. Let

zijk, x1,ijk “ px1,ijk1, . . . , x1,ijkq1q and x2,ijk “ px2,ijk1, . . . , x2,ijkq2q, i P I, j P J, k P K, be

latent (non observable) variables, and 1ˆ q1 and 1ˆ q2 row vectors of explanatory variables,
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respectively. Let us define the vectors and matrices

yjk “ col
1ďiďI

pyijkq, zjk “ col
1ďiďI

pzijkq, X1,jk “ col
1ďkďK

px1,ijkq, X2,jk “ col
1ďkďK

px2,ijkq,

y “ col
1ďjďJ

p col
1ďkďK

pyjkqq, z “ col
1ďjďJ

p col
1ďkďK

pzjkqq,

X1 “ col
1ďjďJ

p col
1ďkďK

pX1,jkqq, X2 “ col
1ďjďJ

p col
1ďkďK

pX2,jkqq.

Let be ujk “ pu1,jk, u2,jkq
1, with u1,jk, u2,jk independent Np0, 1q random effects, and

u1 “ col
1ďjďJ

p col
1ďkďK

pu1,jkqq „ NJKp0, Iq, u2 “ col
1ďjďJ

p col
1ďkďK

pu2,jkqq „ NJKp0, Iq, u “ pu
1
1,u

1
2q
1.

The vectors pyijk, zijkq, i P I, j P J, k P K, follow an area-level zero-inflated Gamma (aZIG)975

mixed model with random intercepts on jk crossings (week per province) if976

zijk „ BEppijkq, P pyijk “ 0{zijk “ 1q “ 1,

fpyijk “ t{zijk “ 0q “ exp
 

´νµ´1
ijkyijk ´ ν log µijk ` pν ´ 1q log yijk ` ν log ν ´ log γpνq

(

,

where t ą 0, 0 ă pijk ă 1, ν ą 0, µijk ą 0, i P I, j P J, k P K, and pijk and µijk depend on977

the explanatory variables x1,ijk and x2,ijk, on the regression parameters β1 “ pβ11, . . . , β1q1q
1

978

and β2 “ pβ21, . . . , β2q2q
1 and on the standard deviations φ1, φ2 ą 0 by means of the link979

functions980

logitppijkq “ log
pijk

1´ pijk
“ x1,ijkβ1 ` φ1u1,jk “

q1
ÿ

`“1

x1,ijk`β1` ` φ1u1,jk,

logpµijkq “ x2,ijkβ2 ` φ2u2,jk “

q2
ÿ

`“1

x2,ijk`β2` ` φ2u2,jk, i P I, j P J, k P K.

To complete the definition, and conditioned to u, it is assumed that the vectors pyijk, zijkq
1,

45



i P I, j P J, k P K, are independent. Inverting the above functions, it follows that

pijk “
exptx1,ijkβ1 ` φ1u1,jku

1` exptx1,ijkβ1 ` φ1u1,jku
, µijk “ exptx2,ijkβ2 ` φ2u2,jku, i P I, j P J, k P K.

In short, the model aZIG is a mixture model of two mixed submodels. The BE-submodel981

drives the mixture and incorporates the information derived from the excess of zeros. The982

GA-submodel deals with strictly positive target values using the Gamma distribution with983

means µijk ą 0 and constant shape ν ą 0, i P I, j P J, k P K.984

Let θ “ pβ11,β
1
2, φ1, φ2q

1 be the vector of model parameters and define ξijk “ It0upyijkq. The985

components of the marginal distribution are986

gpyijk|ujk;θq “ ξijkpijk

` p1´ ξijkq

„

p1´ pijkq exp
!

´ νµ´1
ijkyijk ´ ν log µijk ` pν ´ 1q log yijk ` ν log ν ´ log γpνq

)



“
`

1` exptx1,ijkβ1 ` φ1u1,jku
˘´1

#

ξijk exptx1,ijkβ1 ` φ1u1,jku

` p1´ ξijkq exp
!

´ νyijk expt´x2,ijkβ2 ´ φ2u2,jku ´ νpx2,ijkβ2 ` φ2u2,jkq

` pν ´ 1q log yijk ` ν log ν ´ log γpνq
)

+

, i P I, j P J, k P K. (B.1)

By the independence assumptions, it follows that

gpy|u;θq “
J
ź

j“1

K
ź

k“1

gpyjk|ujk;θq, gpyjk|ujk;θq “
I
ź

i“1

gpyijk|ujk;θq.

The likelihood and log-likelihood functions of model aZIG are, respectively,987

gpy;θq “

ż

R2JK

gpy|u;θqfupuq du “
J
ź

j“1

K
ź

k“1

ż

R2

I
ź

i“1

gpyijk|ujk;θqfN2p0,Iqpujkq dujk, (B.2)

988

`pθ;yq “
J
ÿ

j“1

K
ÿ

k“1

log

ż

R2

I
ź

i“1

gpyijk|ujk;θqfN2p0,Iqpujkq dujk. (B.3)
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Given y, the maximum likelihood (ML) estimator of θ can be calculated as follows

θ̂ “ argmaxθPΘ `pθ;yq, Θ “ Rq1`q2 ˆ R2
`, R` “ p0,8q.

By (B.3), the maximisation of `pθ;yq involves integrals in R2. One way to solve it is to989

apply two functions sequentially. First, the integral on ujk needs to be calculated and then,990

the maximisation on θ could be performed. A maximisation method is described below.991

Laplace approximation algorithm992

This section describes the Laplace approximation of the loglikelihood function of model aZIG993

and the algorithm to calculate the ML estimators of the model parameters and to obtain994

modal predictors of the random effects (Kristensen et al, 2016; Brooks et al, 2017; Morales995

et al., 2021). First, the likelihood function of model aZIG is996

gpy;θq “

ż

R2JK

gpy|u;θqfupuq du “

ż

R2JK

exp
 

hpu;y,θq
(

du, (B.4)

where997

hpu;y,θq “

I
ÿ

i“1

J
ÿ

j“1

K
ÿ

k“1

log gpyijk|ujk;θq ´
2JK

2
log 2π ´

1

2

J
ÿ

j“1

K
ÿ

k“1

pu2
1,jk ` u

2
2,jkq.

To apply the Laplace approximation to the integral in (B.4), we have to maximize hpu;y,θq998

in u, given y and θ. For simplicity, we write hpuq. We can carry out the maximization by999

applying an R function of optimization. Alternatively, we can implement a Newton-Raphson1000

algorithm after calculating the first and second partial derivatives of h with respect to u1,jk1001

and u2,jk, j P J, k P K, given y and θ. Let 9h and :h denote the 2JK ˆ 1 vector and the1002

2JK ˆ 2JK matrix of first and second order partial derivatives of hpuq with respect to u,1003
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respectively. The Newton-Raphson updating equation is1004

upi`1q
“ upiq ´ :h´1

pupiqq 9hpupiqq. (B.5)

Let us denote by u˝ the argument of maxima of hpuq. It holds 9hpu˝q “ 0 and the matrix

:hpu˝q is negative definite. The loglikelihood of model aZIG can be approximated by

logP py;θ, q « 2JK log 2π ` hpu˝q ´
1

2
log | ´ :hpu˝q| fi ψpθ;y,u˝q.

The following step is to maximize ψpθ;y,u˝q in θ P Θ. For simplicity, we write ψpθq. Once1005

again, a suitable option is to apply a Newton-Raphson algorithm after calculating the first1006

and second partial derivatives of g with respect to the components of θ, given y and u˝.1007

Let us define M “ dimpΘq “ q1 ` q2 ` 2. Let 9ψ and :ψ denote the M ˆ 1 vector and1008

the M ˆM matrix of first and second order partial derivatives of gpθq, respectively. The1009

Newton-Raphson updating equation is1010

θpi`1q
“ θpiq ´ :ψ´1

pθpiqq 9ψpθpiqq. (B.6)

The final Laplace approximation algorithm combines the two described Newton-Raphson1011

algorithms and can be described by the following steps:1012

1. Set the initial values i “ 0, ε1 ą 0, ε2 ą 0, ε3 ą 0, ε4 ą 0, θp0q, θp´1q
“ θp0q ` 1,1013

up0q “ 0, up´1q “ 1, where 0 and 1 are column vectors of zeros and ones, respectively.1014

2. Until }θpiq ´ θpi´1q
}2 ă ε1, }upiq ´ upi´1q}2 ă ε2, do1015

(a) Apply algorithm (B.5) with seeds upiq, convergence tolerance ε3 and θ “ θpiq1016

fixed. Output: upi`1q.1017

(b) Apply algorithm (B.6) with seed θpiq, convergence tolerance ε4 and u “ upi`1q
1018

fixed. Output: θpi`1q.1019
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(c) Update iÐ i` 1.1020

3. Output: θ̂ “ θpiq and û “ upiq.1021

The output includes the ML estimators of the model parameters, θ̂, and the modal predictors

of the random effects, û. Taking into account the consistency and asymptotic normality of

the ML estimators, θ̂ „ NMpθ,Qpθqq, it is possible to approximate the asymptotic covariance

matrix. It should be remembered that it is the inverse of the Fisher information matrix. In

practice, we use the Hessian matrix. That is, the asymptotic variance matrix of θ̂, Qpθq, can

be approximated as Qpθq « ´ :ψ´1pθ̂q. This allows the calculation of Wald statistics to test

hypotheses about the model parameters. Further, an asymptotic CI at the 1´ α level for a

component θ` of θ is θ̂`˘z1´α{2 q
1{2
`` , ` “ 1, . . . ,M, where θ̂ “ θκ, Qpθκq “ pqabqa,b“1,...,M , κ is

the last iteration of the Laplace algorithm and zα is the α-quantile of the Np0, 1q distribution.

For the regression parameters βa`, a “ 1, 2, ` “ 1, . . . , qa, we can give asymptotic p-values to

test significance. For example, if β̂1` “ β0, the p-value to test H0 : β1` “ 0 is

p-value “ 2PH0pβ̂1` ą |β0|q “ 2P pNp0, 1q ą |β0|{
?
q`` q, ` “ 1, . . . , q1.

To test H0 : β2` “ 0, we apply the same procedure but using qq1`` q1`` instead of q``.1022

Predictors1023

After introducing model aZIG and a sound fitting algorithm, we are going to provide predic-1024

tors of the target quantities. This is done by predicting the expected value of a non-negative1025

response variable, accounting for excess zeros and area-level aggregation. In this sense, it can1026

be used to model the target variable and to study the dependence relationships with a set1027

of auxiliary variables, but it is also a forecasting tool. In mathematical terms, the inference1028
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is focused on the expected values µyijk fi Eryijk|ujks “ p1´ pijkpu1,jkqqµijkpu2,jkq, where1029

pijkpu1,jkq “
exptx1,ijkβ1 ` φ1u1,jku

1` exptx1,ijkβ1 ` φ1u1,jku
,

µijkpu2,jkq “ exptx2,ijkβ2 ` φ2u2,jku, i P I, j P J, k P K.

By plugging ML estimators and modal predictors, the plug-in predictor of µyijk is

µ̂inyijk “
`

1` exptx1,ijkβ̂1 ` φ̂1û1,jku
˘´1

exptx2,ijkβ̂2 ` φ̂2û2,jku, i P I, j P J, k P K.

According to the applied cut-off of the current research, the plug-in predictor will be adequate1030

to achieve our goals. Its ease of interpretation and calculation, as well as its computational1031

performance and execution times, are unsurpassed. Moreover, it provides successful results1032

in the application to the Spanish provincial data for weeks 27-44 and years 2007-2015. Years1033

2007-2014 are used for model fitting and 2015 is reserved for prediction.1034

Bootstrap inference1035

In this section we formalise how to compute bootstrap-based CIs for the model parameters1036

and bootstrap estimates of the MSE of the predictors, and of the quantiles of the bootstrap1037

distribution of the predictions. In all cases, we rely on bootstrap resampling methods.1038

Confidence intervals for model parameters1039

Let θ` be a component of the vector of model parameters θ. Let α P p0, 1q. The following1040

procedure calculates a p1´αq% percentile bootstrap CI for θ`. Algorithm A has the following1041

steps:1042

1. Fit the model to the sample and calculate the ML estimate θ̂ “ pβ̂
1

1, β̂
1

2, φ̂1, φ̂2q
1.1043

2. Repeat B times (b “ 1, . . . , B):1044
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(a) For i P I, j P J, k P K, generate u
˚pbq
1,jk „ Np0, 1q, u

˚pbq
2,jk „ Np0, 1q and calculate1045

p
˚pbq
ijk “ exp

 

x1,ijkβ̂1 ` φ̂1u
˚pbq
1,jk

(`

1` exp
 

x1,ijkβ̂1 ` φ̂1u
˚pbq
1,jk

(˘´1
,

µ
˚pbq
ijk “ exp

 

x2,ijkβ̂2 ` φ̂2u
˚pbq
2,jk

(

.

(b) Generate z
˚pbq
ijk „ BEpp

˚pbq
ijk q. If z

˚pbq
ijk “ 1, do y

˚pbq
ijk “ 0. If z

˚pbq
ijk “ 0, generate1046

y
˚pbq
ijk „ GApµ

˚pbq
ijk , νq.1047

(c) Based on the sample py
˚pbq
ijk ,xijkq, i P I, j P J, k P K, calculate the ML estimate1048

θ̂
˚pbq
` .1049

3. Sort the values θ̂
˚pbq
` , b “ 1, . . . , B, from smallest to largest. They are θ̂˚`p1q ď . . . ď θ̂˚`pBq.1050

A p1´ αq% percentile bootstrap CI for θ` is
`

θ̂˚`ptpα{2qBuq
, θ̂˚`ptp1´α{2qBuq

˘

.1051

Mean squared error estimation1052

We can estimate the MSE of a predictor µ̂yijk by using a resampling method. The following1053

procedure calculates a parametric bootstrap estimator of MSEpµ̂yijkq. It also provides1054

bootstrap estimates for the quantiles of the distribution of the predictions. Algorithm B has1055

the following steps:1056

1. Fit the model to the sample and calculate the ML estimate θ̂ “ pβ̂
1

1, β̂
1

2, φ̂1, φ̂2q
1.1057

2. Repeat B times (b “ 1, . . . , B):1058

(a) For i P I, j P J, k P K, generate u
˚pbq
1,jk „ Np0, 1q, u

˚pbq
2,jk „ Np0, 1q and calculate1059

p
˚pbq
ijk “ exp

 

x1,ijkβ̂1 ` φ̂1u
˚pbq
1,jk

(`

1` exp
 

x1,ijkβ̂1 ` φ̂1u
˚pbq
1,jk

(˘´1
,

µ
˚pbq
ijk “ exp

 

x2,ijkβ̂2 ` φ̂2u
˚pbq
2,jk

(

.

(b) Generate z
˚pbq
ijk „ BEpp

˚pbq
ijk q. If z

˚pbq
ijk “ 1, do y

˚pbq
ijk “ 0. If z

˚pbq
ijk “ 0, generate1060

y
˚pbq
ijk „ GApµ

˚pbq
ijk , νq.1061
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(c) For i P I, j P J, k P K, calculate µ
˚pbq
yijk “ p1´ p

˚pbq
ijk qµ

˚pbq
ijk .1062

(d) Based on the sample py
˚pbq
ijk ,xijkq, i P I, j P J, k P K, calculate the ML estimate1063

θ̂
˚pbq

and the predictor µ̂
˚pbq
yijk, i P I, j P J, k P K.1064

3. For i P I, j P J, k P K, calculate mse˚pµ̂yijkq “
1
B

řB
b“1

`

µ̂
˚pbq
yijk ´ µ

˚pbq
yijk

˘2
,

rmse˚pµ̂yijkq “ pmse
˚
pµ̂yijkqq

1
2 , rrmse˚pµ̂yijkq “

rmse˚pµ̂yijkq

µ̂yijk
.

4. For i P I, j P J, k P K, sort the values µ̂
˚pbq
yijk, b “ 1, . . . , B, from smallest to largest. They1065

are µ̂yijkp1q ď . . . ď µ̂yijkpBq. Let α P p0, 1q. The bootstrap quantile of the distribution1066

of the predictor µ̂yijk that leaves its left-hand probability α is q̂ijk,α :“ µ̂yijkptαBuq.1067
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