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Appendix A Clustering algorithm: K-means

Pattern recognition deals with the construction of mechanisms capable of extracting relevant
information and key patterns from sample observations. That is, the identification of regu-
larities in the data, to impose a set of identity (classification, clustering, association, etc.)
or dependency (regression) relationships. Cluster analysis, or simply clustering, is the task
of grouping a set of observations in such a way that observations in the same group (cluster)
are more similar (in a certain sense) to each other than those in other groups. The aim of
these techniques is to form groups in order to recognise patterns or structures within the
general population. Clustering itself is not a specific algorithm, but the general task to be
solved. This appendix presents the K-means algorithm, the clustering method used in the
data analysis and which was first proposed by Hartigan and Wong (1979).

The K-means algorithm finds k& € Z>! clusters (fixed value), around a given set of centres

{mgl), ey m,(:)} which define the initial clusters Sfl), oS ,gl), by iterating the following steps:

1. Assign each observation X, to a single cluster, being the one with the closest mean:

s = {1 X —m 3 < Xyl 3 b= 1k =Lk

It is imposed that &', is assigned to exactly one Séi), ¢ =1,...,k, although it could be

in two or more.

2. For each cluster, calculate the means that will be used as centres of the new clusters:

3. Update i «<— 7 + 1.

The algorithm converges when the assignments no longer change. However, the iterative

refinement process ends when the maximum number of iterations allowed is reached.
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Appendix B Area-level zero-inflated Gamma mixed model

This appendix describes the area-level zero-inflated Gamma (aZIG) mixed model used in
the data analysis. All mathematical steps are detailed, justifying the soundness of what
is presented. The formulation of the model is given in an orderly fashion, followed by the
description of the Laplace approximation algorithm. Subsequently, the expression of the
plug-in predictor of the target quantities is provided. Given that the focus of our research
is of an applied nature and this predictor achieves good results when applied to real data,
more complex predictors with more sophisticated theoretical properties, such as asymptotic
unbiasedness, were not investigated. Finally, boostrap inference techniques are included to
calculate confidence intervals (CI) of the model parameters and estimate the mean squared

error (MSE) of the predictors.

Model

The model is proposed below in a general form. However, it is particularised for application to
aggregated fire data in weeks and provinces where appropriate. Let us consider a continuous
random variable y;;, taking values on [0,0), where i e I = {1,...,1},jel ={1,...,J} and
ke K=1{1,...,K}. Let D = IJK be the total possible y-values. For instance, y;; could be
the total burned area (in Ha) of a territory during a time period, or its value averaged over
the number of reported forest fires. The indexes ¢, 7 and k might represent the year, week
and province, so D would be the sum of domains defined by the crosses of these categories.
As explained before, the target variable is posed for K = 41 Spanish provinces, during
J = 18 weeks (between the 27 and 44th weeks of the year) and I = 9 years. Therefore, we
deal with D = IJK = 6642 domains and work at area-level to model and predict y;;,. Let
Zijks T1ijk = (T1ijkty - - - Tlijhq) and ok = (Toijkts -+, Toijkg,), ¢ € L, j € I, k € K, be

latent (non observable) variables, and 1 x ¢; and 1 x go row vectors of explanatory variables,
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respectively. Let us define the vectors and matrices

5 = col (yix), zj = col
Yik (ywk)7 ik = e

col, (zijk), X1 = col (k) X2,jk:1(301 (T2,ijk),

I 1<k<K <k<K

IR

y= col (col (yy)), z= col ( col (z)),

1<j<J 1<k<K 1<G<J 1<k<K

X, = col (col (X)), Xao= col ( col (Xsx)).

1<j<J 1<k<K 1<j<J 1<k<K
Let be w;i, = (u,jk, u2,jk)’, With uy ji, ug jx independent N (0, 1) random effects, and

_ . ~ — . ~ _ / !1\/
uy = col ( col (ure)) ~ Nyx(0,I), up = col ( col (uzi))~ Nix(0,T), u = (uy, )"

The vectors (yijk, zijk), ¢ € I, j € J, k € K, follow an area-level zero-inflated Gamma (aZIG)

mixed model with random intercepts on jk crossings (week per province) if

Zijk ~ BE(Dije), P(yijr = 0/zi6 = 1) = 1,

F (g = 12250 = 0) = exp {—vpz b — v1og g + (v — 1) log g + vlog v — log1(1)}

where ¢ > 0, 0 < pyjr <1, v >0, x> 0,7€l, jel, keK, and p;jr and p;;, depend on
the explanatory variables &1 ;;; and @ ;ji, on the regression parameters 8; = (f11, - - -, f1q,)’
and B, = (Pai, ..., Pag,) and on the standard deviations ¢;, ¢o > 0 by means of the link

functions

q1
logit(pijr) = log T pn Ty kB + PruL ik = Z T ijkeSre + Or1ua jk,
ijk =1

q2
log(pije) = @2ijuBy + Gotizjk = Y TajeeBor + dousr, i€ Lje ke K
=1

To complete the definition, and conditioned to w, it is assumed that the vectors (y;j, zijk)’s
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1€l, jelJ, ke, are independent. Inverting the above functions, it follows that

exp{x1ijxB1 + d1u1 i}
1 + exp{x1,jxB; + P1u1 i}

Dijk = y Mijk = eXp{iL'g zngQ + ¢2u2 ]k} (A4S ]1 j € J ke K.

In short, the model aZIG is a mixture model of two mixed submodels. The BE-submodel
drives the mixture and incorporates the information derived from the excess of zeros. The
GA-submodel deals with strictly positive target values using the Gamma distribution with

means [i;;; > 0 and constant shape v >0, i€, jelJ, ke K

Let @ = (87, 85, ¢1, ¢2)" be the vector of model parameters and define &, = I (yijr). The

components of the marginal distribution are
9(Wijrlwin; 0) = Eijrpijn
+ (1= &) l(l — Dijk) exp{ — Vit Yige — v10g pg + (v — 1) log yiji + vlogv — log 'V(V)}]
-1
= (1 + exp{@1,;0; + ¢1U1,jk}) {fzjk exp{®1,ijxB; + dru1 i}
+ (1 — &) exp { — VYijk €XP{—T2ijk By — Paus i} — V(X2ijkBs + Paua i)

+ (V—1)10gy,-jk+V10gy—log7(y)}}, vel, jel, kekK. (B.1)

By the independence assumptions, it follows that

J K I
(ylw;0) = [ [ [o(wulun; 0),  g(yulun; 0) = | | 9(vislw; 6
i=1

7j=1k=1

The likelihood and log-likelihood functions of model aZIG are, respectively,

J K I
9(y; 0) = J 9(ylu; 0) fu(u HHJR | [ 9iinlwje; 0) frnory (i) dujp,  (B.2)

R2JK j=1k=1YR? ]

K 1
(6;y) = > > log fw [ T9@isnlwin: 0) froo.n (i) dusy. (B.3)
i=1

j=1k=1 =
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Given y, the maximum likelihood (ML) estimator of € can be calculated as follows

~

0 = argmaxg_, ((0;y), © =R""% x R2, Ry = (0,0).

By (B.3)), the maximisation of ¢(8;y) involves integrals in R*. One way to solve it is to
apply two functions sequentially. First, the integral on u;; needs to be calculated and then,

the maximisation on @ could be performed. A maximisation method is described below.

Laplace approximation algorithm

This section describes the Laplace approximation of the loglikelihood function of model aZIG
and the algorithm to calculate the ML estimators of the model parameters and to obtain
modal predictors of the random effects (Kristensen et al, 2016; Brooks et al, 2017; Morales

et al., 2021). First, the likelihood function of model aZIG is

ow:0) = | o)t du = | exp{hluiy,0)}du (B.4)
HgQ(II( HQQKII(
where
I J K J K
2JK 1
h U’ y7 Zzzlogg yZ]k|U’]ka ) logzﬂ- 522 uljk+u2jk
i=1j=1k=1 j=1k=1

To apply the Laplace approximation to the integral in (B.4)), we have to maximize h(u;y, 0)
in u, given y and 6. For simplicity, we write h(u). We can carry out the maximization by
applying an R function of optimization. Alternatively, we can implement a Newton-Raphson
algorithm after calculating the first and second partial derivatives of h with respect to u; j
and ugji, j € J, k € K, given y and 6. Let h and h denote the 2JK x 1 vector and the

2JK x 2JK matrix of first and second order partial derivatives of h(u) with respect to u,
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respectively. The Newton-Raphson updating equation is
wD = @ — () h(u®). (B.5)

Let us denote by u° the argument of maxima of h(w). It holds h(u°) = 0 and the matrix

h(u°) is negative definite. The loglikelihood of model aZIG can be approximated by
1 .
log P(y;0,) ~ 2JK log 2m + h(u®) — 3 log | — h(u®)| = ¥(0;y,u®).

The following step is to maximize 1(0;y,u°) in € € ©. For simplicity, we write (). Once
again, a suitable option is to apply a Newton-Raphson algorithm after calculating the first
and second partial derivatives of g with respect to the components of 8, given y and u°.
Let us define M = dim(©) = ¢; + ¢2 + 2. Let ¢ and 1) denote the M x 1 vector and
the M x M matrix of first and second order partial derivatives of ¢(0), respectively. The

Newton-Raphson updating equation is

0t = 9 — =1 (9D) h(8M). (B.6)

The final Laplace approximation algorithm combines the two described Newton-Raphson

algorithms and can be described by the following steps:
1. Set the initial values i = 0, &, > 0, &9 > 0, e3 > 0, g, > 0, 89, Y = 9O 4 1
u® =0, =Y = 1, where 0 and 1 are column vectors of zeros and ones, respectively.
2. Until HO(Z) — 0(1'—1)”2 <€y, ||’U,(l) — u(i’l)Hg < €9, do
(a) Apply algorithm (B.5) with seeds u(?, convergence tolerance 3 and 8 = @
fixed. Output: w(*+b.

(b) Apply algorithm 1@} with seed 8, convergence tolerance €4 and u = u*+Y

fixed. Output: @01,
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(c) Update i < i+ 1.

3. Output: 6 = 8% and @ = u.

The output includes the ML estimators of the model parameters, 9, and the modal predictors
of the random effects, w. Taking into account the consistency and asymptotic normality of
the ML estimators, @ ~ N v(0,Q(0)), it is possible to approximate the asymptotic covariance
matrix. It should be remembered that it is the inverse of the Fisher information matrix. In
practice, we use the Hessian matrix. That is, the asymptotic variance matrix of é, Q(0), can
be approximated as Q(60) ~ —zﬂ_l(@). This allows the calculation of Wald statistics to test
hypotheses about the model parameters. Further, an asymptotic CI at the 1 — « level for a
component 6, of 0 is égizl_a/g q%z, ¢=1,..., M, where 0 = 0", Q(0") = (qub)ap=1...:, K I8
the last iteration of the Laplace algorithm and z, is the a-quantile of the N (0, 1) distribution.
For the regression parameters 8,0, a = 1,2, { =1,...,q,, we can give asymptotic p-values to

test significance. For example, if BM = [y, the p-value to test Hy : (1, = 0 is

p-value = 2Py, (B > |Bo]) = 2P(N(0,1) > |Bol/v/aw), €=1,...,q.

To test Hy : Bor = 0, we apply the same procedure but using gy, 474, +¢ instead of gg.

Predictors

After introducing model aZIG and a sound fitting algorithm, we are going to provide predic-
tors of the target quantities. This is done by predicting the expected value of a non-negative
response variable, accounting for excess zeros and area-level aggregation. In this sense, it can
be used to model the target variable and to study the dependence relationships with a set

of auxiliary variables, but it is also a forecasting tool. In mathematical terms, the inference
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is focused on the expected values iy = Elyijk|wir] = (1 — pijr(u1 k) phije(ue 1), where

exp{x1,ijuB; + Oru1 i}
1+ exp{® 1B + drur ji}
pijk (U i) = expi@ainBy + Gougjnt, i€l jel kekK

pijk(u1ge) =

By plugging ML estimators and modal predictors, the plug-in predictor of ;5 is
in 5 A —1 » N . .
Hoijke = (1 + exp{x1ixB; + ¢1U1,jk}) exp{T2,ijxBy + P2tia i}, i€l jel kekK

According to the applied cut-off of the current research, the plug-in predictor will be adequate
to achieve our goals. Its ease of interpretation and calculation, as well as its computational
performance and execution times, are unsurpassed. Moreover, it provides successful results
in the application to the Spanish provincial data for weeks 27-44 and years 2007-2015. Years

2007-2014 are used for model fitting and 2015 is reserved for prediction.

Bootstrap inference

In this section we formalise how to compute bootstrap-based Cls for the model parameters
and bootstrap estimates of the MSE of the predictors, and of the quantiles of the bootstrap

distribution of the predictions. In all cases, we rely on bootstrap resampling methods.

Confidence intervals for model parameters

Let 0y be a component of the vector of model parameters 6. Let a € (0,1). The following
procedure calculates a (1—a)% percentile bootstrap CI for #,. Algorithm A has the following

steps:

1. Fit the model to the sample and calculate the ML estimate 6 = (Bll, B;, 1, ggg)’.

2. Repeat B times (b=1,...,B):
20
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(a) Foriel, jel, keK, generate ul(]bk N(0,1), ug(]k N(0,1) and calculate

b 3. + b 3, + ori )
p;kj(k) = exp {wl,ijkﬁl + <Z51U>1k(g/1} (1 + exp {wl»ijkﬁl T (blui(ﬂz ) ’
. A S (b
M:j(k:) = exp {5132,1;jk,32 + ¢2u>2k(gli}

(b) Generate sz.(,f) ~ BE(pjj(:)). If ,zzj,C =1, do y:j(,f) = 0. If zwk = 0, generate
b)
?/:](k GA(NUka V).
(c) Based on the sample (y;kj(,f), xiik), i €1, j € J, k € K, calculate the ML estimate

;)

. DOor evauesA ,0=1 ..., B, from smallest to largest. eyareA <...<A .
3. Sort the values 0} b =1,... B, f llest to 1 Th 0 Ot g

A (1 — a)% percentile bootstrap CI for 6, is (éz‘(l(a/?)BJ), éz([(l—aﬂ)BJ))‘

Mean squared error estimation

We can estimate the MSE of a predictor fi,,;r by using a resampling method. The following
procedure calculates a parametric bootstrap estimator of MSE(fi,;,). It also provides
bootstrap estimates for the quantiles of the distribution of the predictions. Algorithm B has

the following steps:

1. Fit the model to the sample and calculate the ML estimate 6 = (BII, B;, b1, Qgg)/.

2. Repeat B times (b=1,..., B):

(a) Foriel, jel, ke K, generate ul(b ~ N(0,1), Q(Jk N(0,1) and calculate

b 3. + b B, + dif )
p:j(k) = exp{@LinB) + ¢1u>1k(ﬂi} (1 + exp {inBy + (blui(ﬂ”z )
, 5 o x(b
M:j(k) = exp {@2ixB; + ¢2“;(ﬂi}

(b) Generate sz.(,f) ~ BE(pjj(,f)). If zwk =1, do y:j(,f) =0. If zwk = 0, generate

#(b)
yl](k GA(Hz]k)? )
o1
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(c) Foriel, jel, keK, calculate ,uyl(b) (1— pfj(g))ujj(g).

(d) Based on the sample (y;kj(,f), xiik), i €1, j € J, k € K, calculate the ML estimate

5%(0)

6 " and the predictor /l;(f,)g, iel,jel, keK

. Foriel, jel, kek, calculate mse*(fiyiji) = 5 Zb L (2 0 M*@)27

Fyijk yijk

rmse” (i)

~ N 1 N
rmse*(:“yzjk) = (mse*(ﬂyijk))Qa TTmS(E*(Myijk) = ~
Hoyijk

. Foriel, jel, kel sort the values /l;(;’,)c, b=1,...,B, from smallest to largest. They

are flyije(1) < ... < flyijeB)- Let a € (0,1). The bootstrap quantile of the distribution

of the predictor fi,;;; that leaves its left-hand probability o is Gijk,a 1= flyijk(laB))-
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