
10.1071/WF23148 

International Journal of Wildland Fire 

 

Supplementary Material 

Is the smoke aloft? Caveats regarding the use of the Hazard Mapping System 

(HMS) smoke product as a proxy for surface smoke presence across the United 

States 

Tianjia LiuA,G,*, Frances Marie PandayB, Miah C. CaineC, Makoto KelpA, Drew C. 

PendergrassD, Loretta J. MickleyD, Evan A. EllicottB, Miriam E. MarlierE, Ravan AhmadovF 

and Eric P. JamesF 

 

ADepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 

BDepartment of Geographical Sciences, University of Maryland, College Park, MD, USA 

CDepartment of Computer Science, Harvard University, Cambridge, MA, USA 

DJohn A. Paulson School of Engineering, Harvard University, Cambridge, MA, USA 

EDepartment of Environmental Health Sciences, University of California, Los Angeles, Los 

Angeles, CA, USA 

FGlobal Systems Laboratory, National Oceanic and Atmospheric Administration, Boulder, 

CO, USA 

GDepartment of Geography, University of British Columbia, Vancouver, BC, Canada 

 

 
*Correspondence to: Email: tianjia.liu@ubc.ca  

mailto:tianjia.liu@ubc.ca


 2 

ISD and HMS smoke days and trends at airport locations 

Table S1. Number of ISD airports with statistically significant (p-value < 0.05) trends in smoke 
days per year from 2010-2011. 

Region ISD HMS all HMS 
medium/heavy HMS heavy Total 

CONUS 493 386 639 1017 1598 
Western U.S. 295 255 288 389 614 
Alaska 16 14 9 0 108 

 
Table S2. Average smoke days (± 1D) per year from 2010-2021 by region. 

Region ISD HMS all HMS 
medium/heavy HMS heavy 

Western U.S. 7.1 ± 4.5 36.2 ± 18.5 10.7 ± 9.8 3.7 ± 4.7 
Pacific 11.6 ± 8.2 27.5 ± 18 11.1 ± 11.2 5 ± 6.6 
Mountain 3.7 ± 2.8 29.4 ± 19.8 10.8 ± 11.3 4.1 ± 5.6 
West North Central 3.8 ± 2.5 56.1 ± 20.6 17.8 ± 13.1 5.8 ± 7.2 
East North Central 3.6 ± 2.5 44.8 ± 17.1 12.9 ± 10.2 3.9 ± 4.4 
Northeast 2.5 ± 1.8 25.8 ± 15 6.1 ± 5.6 1.4 ± 1.8 
West South Central 7 ± 4.3 41.4 ± 23 7.3 ± 7.4 1.4 ± 1.8 
East South Central 3.6 ± 2.3 27.9 ± 19.9 4.7 ± 5.4 0.8 ± 1.2 
South Atlantic 5.1 ± 2.6 21.6 ± 17.7 3.1 ± 3.8 0.7 ± 1 
Alaska 2.4 ± 2.2 10.7 ± 8.8 2.7 ± 3.4 0.8 ± 1.6 

 
Table S3. Linear trend in smoke days per year from 2010-2021 by region. The slope is shown 
with the standard error in parenthesis. 

Region ISD HMS all HMS 
medium/heavy HMS heavy 

Western U.S. 1.1 (0.2) * 2.9 (1.3) 1.7 (0.7) * 0.9 (0.3) * 
Pacific 2 (0.4) * 4 (0.9) * 2.3 (0.7) * 1.4 (0.4) * 
Mountain 0.7 (0.1) * 3.8 (1.2) * 2.1 (0.7) * 1.1 (0.4) * 
West North Central 0.5 (0.2) * 2.1 (1.7) 2 (1) 1.3 (0.5) * 
East North Central 0.3 (0.2) 1.9 (1.4) 1.7 (0.7) * 0.9 (0.3) * 
Northeast 0.3 (0.1) 2.6 (1) * 1.1 (0.4) * 0.4 (0.1) * 
West South Central 1 (0.2) * 1.4 (2) 0.7 (0.6) 0.3 (0.1) 
East South Central 0.4 (0.2) * 2.6 (1.5) 0.7 (0.4) 0.2 (0.1) * 
South Atlantic 0.5 (0.2) * 1.8 (1.4) 0.4 (0.3) 0.1 (0.1) 
Alaska 0.4 (0.1) * 1 (0.7) 0.4 (0.3) 0.1 (0.1) 

* p-value < 0.05  
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EPA PM2.5 monitors 

 
Fig. S1. Map of CONUS regions and Alaska with EPA PM2.5 monitor locations. Each white 
dot represents the location of EPA PM2.5 monitors used in this study. (Note that Alaska is not 
shown on the same scale as CONUS.)  
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Assessing uncertainty in HMS-based smoke PM2.5 estimates 

Table S4. Confidence categories for defining lower and upper bounds in smoke PM2.5 estimation 
based on HMS smoke density categories and PM2.5 anomalies as percentiles relative to the 
distribution of PM2.5 anomalies on non-smoke days 

Confidence HMS 
(smoke density categories) 

EPA 
(percentiles of non-smoke 

distribution of PM2.5 anomalies) 
High (lower bound) Heavy-only plumes > 85% 
Medium Medium and heavy plumes > 70% 
Low (upper bound) All plumes > 50% 

 

 
Fig. S2. Example of PM2.5 observations with confidence levels for an EPA monitor in 
Weaverville, California from July to November 2020. The maximum HMS smoke plume 
density (top), percentile of PM2.5 anomalies relative to the distribution of PM2.5 anomalies on 
non-smoke days (bottom), and maximum confidence level category (bottom) are shown 
alongside the total, smoke, and background PM2.5. Confidence level categories (low, medium, 
high) associated with each smoke PM2.5 estimates are defined in Table S4. The average smoke 
PM2.5 from July-November ranges from 13.1 µg m-3 for low confidence (upper bound) to 13 µg 
m-3 for medium confidence to 12.2 µg m-3 for high confidence (lower bound). 
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Fig. S3. Annual average smoke PM2.5 from EPA monitor data from 2010-2021 at different 
confidence levels and by region. Confidence level categories (low, medium, and high) are 
defined based on HMS smoke densities and percentiles of PM2.5 anomalies relative to the 
distribution of PM2.5 anomalies on non-smoke days, as defined in Table S4.  
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Gap-filling missing HMS smoke densities using a random forest model 

Starting from 2008, each polygon in the HMS dataset is consistently assigned a smoke 
density category, but there is a data gap from late 2008 to early 2010 when the density for 35,828 
polygons is unspecified, possibly due to an error in the data archiving process. To fill this data 
gap, we train a random forest model on the density labels of smoke polygons from 2008-2021. 
For classification, the random forest algorithm is based on the majority vote of an uncorrelated 
ensemble of decision trees (Breiman 2001). Each decision tree is individually fit to a random 
bootstrap sample of the training data and features, or input variables. Decision tree training is 
recursive, splitting data into branches via an optimal split point determined from the features. 
Individual decision trees have high error variance but no inherent bias, so averaging many 
individual and uncorrelated trees yields a low variance, low bias prediction. 

We use the following independent variables derived from HMS metadata and satellite 
data to model the density category: month, time of day of the first and last GOES image used to 
draw the polygon (“start” and “end”), duration of the animated set of images used to draw the 
polygon (“duration”), area of polygon (“area”), average Aerosol Optical Depth (AOD) within the 
polygon (“AOD”), and fraction of overlap with other polygons on the same day (“overlap”) 
(Table S5). For AOD, we use the MODIS Multi-angle Implementation of Atmospheric 
Correction (MAIAC) product (MCD19A2, Collection 6) at 0.55 μm (Lyapustin et al 2018). 
MAIAC operates on a fixed 1-km grid and combines the advantages of the MODIS Dark Target 
and Deep Blue algorithms that specialize on dark vegetative and bright desert surfaces, 
respectively. The “overlap” variable takes advantage of the nested nature of the smoke polygons; 
that is, heavy smoke plumes are located within medium smoke extent, and medium smoke 
plumes are located within light smoke extent (Brey et al 2018). We calculate the fractional area 
of each smoke polygon that overlaps with other polygons from the same day. Medium and heavy 
smoke polygons have relatively high overlap, and light smoke polygons low overlap. 

We train two random forest models with and without AOD. Some HMS polygons (n = 
525) had missing AOD values due to cloud coverage preventing successful AOD retrievals. We 
use the model trained with AOD to gap-fill over 98% (n = 35303) of the unspecified densities, 
while we use the model trained without AOD to gap-fill the remaining unspecified densities. For 
1000 bootstrap iterations, we undersample the light and medium categories so that all three 
densities are equally represented in the random forest model; we then split 2/3 of the dataset for 
training data and for 1/3 for test data. Without undersampling, the random forest model would 
prioritize the classification accuracy of light smoke, as light smoke plumes (75%) occur much 
more frequently than medium (18%) and heavy (8%) smoke. 

The primary model, which includes all independent variables listed in Table S5, is used 
to gap-fill 35,303 polygons, while the secondary model, which excludes AOD, is used to gap-fill 
525 polygons that have missing input AOD data. For the primary model, the test accuracy is 85% 
for light smoke, 58% for medium smoke, and 66% for heavy smoke (Fig. S4a). For the 
secondary model, the test accuracy is 83% for light smoke, 51% for medium smoke, and 67% for 
heavy smoke (Fig. S4b). The “overlap” variable, which specifies the fraction of overlap in one 
polygon with other polygons on the same day, is by far the most important variable, leading to a 
high mean decrease in model accuracy if that variable were excluded. The fractional overlap of a 
given HMS polygon with other polygons drawn at the same time is an innate property of HMS 
smoke product – i.e., heavy density polygons are nested within medium and light density 
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polygons. The lower accuracy for medium smoke relates to the weaker separation of medium 
smoke with light and heavy smoke by the overlap variable, which cannot distinguish between 
medium and heavy density polygons well if both are totally nested within a light density 
polygon. The mean AOD within the smoke polygon is the second most important variable; 
medium smoke density polygons tend to be associated with high AOD. However, clouds can 
obstruct AOD retrievals, and AOD values can highly vary within a polygon and throughout the 
day and year. MAIAC AOD relies on MODIS observations from the Terra and Aqua satellites, 
each of which overpass a location only once per day during daytime. Other variables, such as the 
start and time end of the satellite images used and polygon area, do not improve model 
performance much.  
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Table S5. Inputs and outputs of the random forest models used to gap-fill HMS smoke density 
labels 

 Description Format 
Inputs 
Overlap Fraction of overlap between a given 

polygon and other polygons in the same 
day 

Numeric, [0-1] 

AOD Average MODIS MAIAC C6 aerosol 
optical depth within the smoke polygon 

Numeric, [≥0] * 

Start  Start time of the set of images used to 
delineate smoke polygon outline 

Numeric, HHMM, UTC 

End End time of the set of images used to 
delineate smoke polygon outline 

Numeric, HHMM, UTC 

Duration Duration of the set of images used to 
delineate smoke polygon outline, 
difference between start and end time 

Numeric, hours 

Month Month that the smoke polygon is detected Numeric, [1-12] 
Area Area of smoke polygon Numeric, km2 
Outputs 
Density HMS smoke density Categorical, [light, medium, heavy] 

* AOD values are generally ≥ 0, but small negative values are permitted in the retrievals  
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Fig. S4. Performance of random forest models for gap-filling HMS polygons with 
“unspecified” smoke density. Variable importance (left) and accuracy of the test set (right) for 
random forest models (a) with AOD as a predictor and (b) without AOD as a predictor. The plots 
show the average ± 1SD for variable importance and test set accuracy over 500 bootstrap 
iterations. Variable importance is indicated by the mean decrease in accuracy, where higher 
values represent more important variables.  
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