10.1071/SR23133

Soil Research

Supplementary Material

Alpine meadow degradation decreases soil P availability by altering *phoD*-harbouring bacterial diversity

Yanuo Zou^{A,B}, Xiangtao Wang^C, Jie Wang^D, Lu Zhang^{A,B}, Lirong Liao^{A,B}, Guobin Liu^{A,B}, Zilin Song^E, and Chao Zhang^{A,B,*}

^AState Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Shaanxi, 712100, P. R. China.

^BInstitute of Soil and Water Conservation, Chinese Academy of Science, Shaanxi, 712100, P. R. China.

^cCollege of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, P. R. China.

^DCollege of Forestry, Guizhou University, Guiyang, 550025, P. R. China.

^ECollege of Natural Resources and Environment, Northwest A&F University, Shaanxi, 712100, P. R. China.

^{*}Correspondence to: Chao Zhang State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Shaanxi, 712100, P. R. China Email: zhangchao1985@nwafu.edu.cn

supplementary materials

Method of calculation of TER_{C:N} and TER_{C:P}:

$$\text{TER}_{C:N} = (\text{BG/NAG})\text{B}_{C:N}/n_o, \tag{1}$$

$$TER_{C:P} = (BG/ALP)B_{C:P}/po,$$
(2)

where BG/NAG is the ecoenzymatic activity ratio for β -1,4-glucosidase and β -1,4-Nacetylglucosaminidase, BG/ALP is the ecoenzymatic ratio for β -1,4-glucosidase, and ALP, B_{C:N} and B_{C:P} are the C:N or C:P ratios of the microbial biomass, respectively, and p_0 and n_0 are dimensionless normalization constants for N and P, respectively. The normalization constants p_0 and n_0 are the intercepts in the standardized major axis regression plots for log_e(BG) vs. log_e(NAG) and log_e(BG) vs. log_e(ALP), respectively. For a more detailed analysis of the derivations of these equations, refer to Sinsabaugh *et al.* (2009).

In this study, $\text{TER}_{C:N}$ and $\text{TER}_{C:P}$ was calculated to determine whether P is a limiting nutrient element for microbial growth, which was widely used in nutrient stoichiometry studies (Tapia-Torres *et al.* 2015; Montiel-González *et al.* 2017; Cui *et al.* 2018; Xiao *et al.* 2020). According to Sterner and Elser (2002), If the C: N or C: P ratio of the organic matter being consumed is greater than the TER for that element, it suggests nutrient limitation.

- Cui, Y, Fang, L, Guo, X, Wang, X, Zhang, Y, Li, P, Zhang, X (2018) Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China. *Soil Biology and Biochemistry* **116** 11-21. https://doi.org/10.1016/j.soilbio.2017.09.025
- Montiel-González, C, Tapia-Torres, Y, Souza, V, García-Oliva, F (2017) The response of soil microbial communities to variation in annual precipitation depends on soil nutritional status in an oligotrophic desert. *PeerJ* **5** 10.7717/peerj.4007
- Spohn, M, Kuzyakov, Y (2013) Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation – Coupling soil zymography with 14C imaging. *Soil Biology and Biochemistry* 67 106-113. https://doi.org/10.1016/j.soilbio.2013.08.015

- Sterner, J.J. Elser, R.W. (2002) Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere, Princeton University Press, Princeton. 1-43
- Tapia-Torres, Y, Elser, JJ, Souza, V, García-Oliva, F (2015) Ecoenzymatic stoichiometry at the extremes: How microbes cope in an ultra-oligotrophic desert soil. *Soil Biology and Biochemistry* 87 34-42. https://doi.org/10.1016/j.soilbio.2015.04.007
- Xiao, L, Liu, G, Li, P, Li, Q, Xue, S (2020) Ecoenzymatic stoichiometry and microbial nutrient limitation during secondary succession of natural grassland on the Loess Plateau, China. *Soil* and *Tillage Research* 200 104605. https://doi.org/10.1016/j.still.2020.104605

Parameters	ND	LD	MD	SD	F	Р
NO3 ⁻ -N (mg·kg ⁻¹)	13.05±1.07a	6.74±0.21b	5.32±0.64bc	3.69±0.47c	36.98	< 0.001
NH_4^+ -N (mg·kg ⁻¹)	6.97±0.73a	3.49±0.35b	3.72±0.36b	3.290.45b	12.40	< 0.001
Total nitrogen (g·kg ⁻¹)	2.42±0.19a	1.77±0.05b	1.30±0.02c	1.06±0.09c	29.08	< 0.001
Dissolved organic carbon (mg·kg ⁻¹)	664.22±13.47a	496.34±9.92b	427.84±9.56c	327.48±7.73d	186.25	< 0.001
Dissolved organic nitrogen (mg·kg ⁻¹)	195.66±7.65a	147.46±8.19b	96.10±4.50c	62.46±4.14d	83.83	< 0.001
Soil organic carbon (g·kg ⁻¹)	33.51±3.49a	19.46±0.61b	13.57±0.41c	10.94±0.88c	30.02	< 0.001
Available potassium (mg·kg ⁻¹)	116.96±11.19a	106.23±4.48a	95.52±10.38a	95.98±6.54a	1.39	0.280
pH	6.43±0.04a	6.65±0.03b	6.78±0.02bc	6.90±0.07c	21.14	< 0.001
Soil moisture (%)	23.35±1.19a	22.88±0.55a	18.37±0.57b	15.50±0.33c	26.25	< 0.001
C/N	13.73±0.45a	11.01±0.11b	10.46±0.23b	10.37±0.13b	34.74	< 0.001

Table S1 Soil physicochemical properties in four meadows along the degradation gradient

Values are means \pm standard error (n = 5). Different letters indicate significant differences between different treatments (Duncan's test, *P* < 0.05). ND: non-degraded meadow; LD: lightly degraded meadow; MD: moderately degraded meadow; SD: severe degraded meadow, C/N: the ratio of soil organic carbon and total nitrogen.

Table S2 Plant properties in four meadows along the degradation gradient									
Parameters	ND	LD	MD	SD	F	Р			
Richness	8.20±1.10a	7.40±1.67a	12.20±0.84b	8.20±0.84a	17.38	< 0.001			
Plant Shannon index	0.94±0.08a	1.42±0.20b	1.77±0.10c	1.64±0.17c	31.64	< 0.001			
Above ground biomass	178.38±14.27a	253.28±33.61b	167.35±23.80a	45.77±28.26c	54.69	< 0.001			
Below ground biomass	894.05±49.55a	866.25±58.96a	593.86±114.11b	158.98±89.58c	86.17	< 0.001			
Biomass	1072.43±62.38a	1119.53±76.38a	761.21±134.49b	204.75±113.69c	87.01	< 0.001			
Coverage	94.20±2.77a	83.00±3.47b	74.00±2.35c	39.40±4.05d	268.67	< 0.001			

Values are means \pm standard error (n = 5). Different letters indicate significant differences between different treatments (Duncan's test, *P* < 0.05). ND: non-degraded meadow; LD: lightly degraded meadow; MD: moderately degraded meadow; SD: severe degraded meadow.

Fig. S1 Sampling sites in the Alpine Meadow nature Reserve (A) and the landscape of ND: non-degraded Meadow (B), LD: lightly degraded meadows (C), MD: moderately degraded meadows (D) and SD: severely degraded meadows (E).

Fig. S2 The dominate vegetations of the four meadows. ND: non-degraded meadow; LD: lightly degraded meadow; MD: moderately degraded meadow; SD: severe degraded meadow.

Fig. S3 the composition of *phoD*-harboring bacterial community at phylum level; ND: non-degraded meadow; LD: lightly degraded meadow; MD: moderately degraded meadow; SD: severe degraded meadow.