Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Effects of high pH solutions with large monovalent cation concentrations on cation exchange properties

RE Liefering and CDA Mclay

Australian Journal of Soil Research 34(2) 229 - 242
Published: 1996

Abstract

Disposal of strongly alkaline industrial liquid wastes, which contain large monovalent cation concentrations, by means of land treatment systems is becoming increasingly common. This study investigated the effects of solutions with large monovalent cation concentrations and high pH on cation exchange properties in four New Zealand soils with different clay mineralogies. The soils were shaken with a range of concentrations (0–0.3 M) of NaOH, KOH, NaCl, and KCl. Cation exchange capacity (CEC) and exchangeable cations (Ca2+, Mg2+, K+, and Na+) were measured following shaking and washing procedures. Although the hydroxide solutions dissolved significant amounts of organic matter from all soils, there was still a net increase in CEC measured at all hydroxide concentrations. The magnitude of the CEC increase was dependent on hydroxide concentration. The increase in CEC is attributed to newly generated negative charge on surfaces which possess variable charge (i.e. pH dependent) characteristics such as edge sites of clay minerals, sesquioxides, and the undissolved organic matter remaining in the soil. In contrast to hydroxide solutions, no increase in CEC was measured in chloride-treated samples. Increases in the concentration of all treatment solutions resulted in increases in the exchangeable ion concentration of the index cation used in the treatment solution (either Na+ or K+) and decreases in concentration of the other three exchangeable cations.

In general, higher exchangeable sodium percentage (ESP) values were measured in samples treated with NaOH than samples treated with NaCl at all concentrations. Similarly, higher exchangeable potassium percentage (EPP) was measured in samples treated with KOH than samples treated with KCl at all concentrations. The higher ESP and EPP values recorded when hydroxide solutions were used as treatments are attributed to the newly generated negative charges being counter-balanced by the monovalent index cation present in the treatment solution. It is suggested that existing equations commonly used to predict ESP and EPP values are unsuccessful for accurately predicting changes when soils are treated with hydroxide solutions, due to their inability to account for the newly generated exchange sites. The equations did, however, adequately predict the effects of both chloride solutions on ESP and EPP.

Keywords: hydroxide, chloride, sodium, potassium, CEC, exchangeable cations.

https://doi.org/10.1071/SR9960229

© CSIRO 1996

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions