Subsoil hydraulic conductivity estimates for the Lower Macquarie Valley
Australian Journal of Soil Research
34(2) 213 - 228
Published: 1996
Abstract
Field saturated hydraulic conductivity was measured in situ, at two depths in the B horizon, on irrigated soils in the Lower Macquarie Valley. Measurements were made with constant head well permeameters, using the single-head method, and water of moderate sodicity and high salinity. The hydraulic conductivity data were log-normally distributed for all soil groups and there were significant differences between some of these soil groups in mean hydraulic conductivity. Three soils exhibited significant differences in mean hydraulic conductivity between depths. Hydraulic conductivity measurements ranged up to 3 orders of magnitude within a soil. Variation in hydraulic conductivity estimates, both between and within soil groups, confirmed the variation observed in previous predictions of deep drainage, which were obtained using a semi-empirical model. A cluster analysis on hydraulic conductivity indicated that similar morphological soil properties did not necessarily reflect similar hydrologic properties.There was a strong relationship between hydraulic conductivity and exchangeable sodium percentage (ESP), hydraulic conductivity and clay content, and ESP and clay content. A model was developed to predict field saturated hydraulic conductivity from ESP and clay content data. Hydraulic conductivity measured in this study may not have been representative of percolation rates which would occur with low salinity irrigation water, but can be used to assess the risk of recharge from irrigation on different soils in the lower Macquarie Valley. Shallow watertables may potentially develop when the application of irrigation water greatly exceeds crop water requirements. Quantification of groundwater recharge will allow the likelihood of shallow watertable development in the Lower Macquarie Valley to be assessed.
Keywords: constant head well permeameter, clay content, exchangeable sodium percentage.
https://doi.org/10.1071/SR9960213
© CSIRO 1996