Register      Login
Soil Research Soil Research Society
Soil, land care and environmental research
RESEARCH ARTICLE

Sodic soils - New perspectives

ME Sumner

Australian Journal of Soil Research 31(6) 683 - 750
Published: 1993

Abstract

There are large areas of the world where soils are adversely affected by the presence of sodium (Na) as an exchangeable cation. Unlike their saline counterparts which are more extensive, sodic soils have received less attention in the literature. There has been considerable disagreement concerning the definition of sodicity, owing largely to the fact that many experiments used in the development of definitions did not account for the presence of salts in the water used to measure hydraulic properties. These problems are discussed and the conclusion is reached that a single simple definition is no longer possible. This problem is further exacerbated by the fact that many soils which would never have fallen into a previously defined sodic category, do in fact exhibit sodic properties. The major focus of this account of sodicity will therefore be the soils which contain relatively low levels of exchangeable Na. As such soils are widespread in both humid and subhumid areas of the world and are responsible for the production of a large proportion of the world cereal crop, they deserve special attention. Because swelling and dispersion are the primary processes responsible for the degradation of soil physical properties in the presence of Na, an account of clay behaviour in relation to Na and electrolyte concentration is presented before exploring these new realms of sodicity. Pure clay systems are not always suitable for use as models of soil behaviour in terms of dispersion and flocculation. However, as far as swelling is concerned, the correspondence is much better. Nevertheless, the effects of the exchangeable cations on dispersion are predictable albeit usually only qualitatively. This is partly due to the phenomenon of 'demixing' in which the cations are not distributed over all surfaces in the same proportions. The effects of Na and electrolyte concentration in relation to hydraulic conductivity, infiltration, crusting, runoff, erosion and hardsetting are discussed from which it emerges that the effects of Na are manifested in measurable and often sizeable proportions down to very low levels far below those previously used to define sodic soils. The primary processes responsible for physical degradation are swelling at relatively high levels and clay dispersion throughout the range of exchangeable Na percentage (ESP). Provided that the total electrolyte concentration (TEC) is below the critical flocculation concentration (CFC), clays will disperse spontaneously at high ESP values, whereas at lower ESP levels, inputs of energy are required for dispersion. The TEC of the ambient solution, because of its effects in promoting clay flocculation, is crucial in determining soil physical behaviour.

Keywords: Sodicity; Exchangeable Sodium Percentage; Esp; Clay Dispersion; Hardsetting Crusting; Runoff; Erosion; Soil Structure;

https://doi.org/10.1071/SR9930683

© CSIRO 1993

Committee on Publication Ethics


Export Citation Get Permission

View Dimensions

View Altmetrics